In order to characterize the subsurface structure of the Jakarta Basin, Indonesia, a dense portable seismic broad-band network was operated by The Australian National University (ANU) and the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) between October 2013 and February 2014. Overall 96 locations were sampled through successive deployments of 52 seismic broad-band sensors at different parts of the city. Oceanic and anthropogenic noises were recorded as well as regional and teleseismic earthquakes. We apply regularized deconvolution to the recorded ambient noise of the vertical components of available station pairs, and over 3000 Green's functions were retrieved in total. Waveforms from interstation deconvolutions show clear arrivals of Rayleigh fundamental and higher order modes. The traveltimes that were extracted from group velocity filtering of fundamental mode Rayleigh wave arrivals, are used in a 2-stage Transdimensional Bayesian method to map shear wave structure of subsurface. The images of S wave speed show very low velocities and a thick basin covering most of the city with depths up to 1.5 km. These low seismic velocities and the thick basin beneath the city potentially cause seismic amplification during a subduction megathrust or other large earthquake close to the city of Jakarta.
Characterizing the interior structure of the Jakarta Basin, Indonesia, is important for the improvement of seismic hazard assessment there. A dense-portable seismic broad-band network, comprising 96 stations, has been operated between October 2013 and February 2014 covering the city of Jakarta. The seismic network sampled broad-band seismic noise mostly originating from ocean waves and anthropogenic activity. We used horizontal-to-vertical spectral ratio (HVSR) measurements of the ambient seismic noise to estimate fundamental-mode Rayleigh wave ellipticity curves, which were used to infer the seismic velocity structure of the Jakarta Basin. By mapping and modelling the spatial variation of low-frequency (0.124-0.249 Hz) HVSR peaks, this study reveals variations in the depth to the Miocene basement. These variations include a sudden change of basement depth from 500 to 1000 m along N-S profile through the centre of the city, with an otherwise gentle increase in basin depth from south to north. Higher frequency (2-4 Hz) HVSR peaks appear to reflect complicated structure in the top 100 m of the soil profile, possibly related to the sediment compaction and transitions among different sedimentary sequences. In order to map these velocity profiles of unknown complexity, we employ a trans-dimensional Bayesian framework for the inversion of HVSR curves for 1-D profiles of velocity and density beneath each station. Results show that very low-velocity sediments (<240 m s −1) up to 100 m in depth cover the city in the northern to central part, where alluvial fan material is deposited. These low seismic velocities and the very thick sediments in the Jakarta Basin will potentially contribute to seismic amplification and basin resonance, especially during giant megathrust earthquakes or large earthquakes with epicentres close to Jakarta. Results have shown good correlation with previous ambient seismic noise tomography and microtremor studies. We use the 1-D profiles to create a pseudo-3-D model of the basin structure which can be used for earthquake hazard analyses of Jakarta, a megacity in which highly variable construction practices may give rise to high vulnerability. The methodology discussed can be applied to any other populated city situated in a thick sedimentary basin.
Based on historical records, Yogyakarta has a high seismic risk related to the earthquake events along active faults, such as the Opak and Merapi-Merbabu Faults. These faults were responsible for several destructive earthquakes in Yogyakarta City and its vicinity and caused fatalities and building damage in the area, e.g., the 2006 (Mw 6.3) Yogyakarta earthquake and earlier in 1943 and 1867. A previous study shows that the Opak Fault has a geodetic slip-rate of 5 mm/y and a potential magnitude Mw 6.6. In addition, the active Merapi-Merbabu Fault has a geodetic slip-rate of 1 mm/y and a potential magnitude Mw 6.6. We used scaling law relations of earthquake parameters and magnitude scenarios to estimate the recurrence time of each fault based on a kinematic model. Our results estimate that the earthquake return period (Tr) for the Opak Fault (Mw 6.6) is ∼162 years, the maximum intensity is ∼VII-VIII MMI scale, the Peak Ground Acceleration (PGA) is ∼36 % g, and Peak Ground Velocity (PGV) is ∼ 30 cm/s for a 5 km hypocentral depth. In the meantime, the earthquake return period for the Merapi-Merbabu Fault (Mw 6.6) is estimated to be ∼810 years, the maximum intensity is ∼ VI-VII MMI, the PGA is ∼ 30-36 % g, and the PGV is ∼ 21-24 cm/s for a 5 km hypocentre depth. Both faults potentially produce destructive earthquakes (Mw > 6.0) in Yogyakarta City and its vicinity. Therefore, assessments of (paleo) earthquakes are needed of both the Opak Fault and the Merapi-Merbabu Fault to support the long-term earthquake hazard mitigation program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.