ImportanceThe effectiveness of ivermectin to shorten symptom duration or prevent hospitalization among outpatients in the US with mild to moderate symptomatic COVID-19 is unknown.ObjectiveTo evaluate the efficacy of ivermectin, 400 μg/kg, daily for 3 days compared with placebo for the treatment of early mild to moderate COVID-19.Design, Setting, and ParticipantsACTIV-6, an ongoing, decentralized, double-blind, randomized, placebo-controlled platform trial, was designed to evaluate repurposed therapies in outpatients with mild to moderate COVID-19. A total of 1591 participants aged 30 years and older with confirmed COVID-19, experiencing 2 or more symptoms of acute infection for 7 days or less, were enrolled from June 23, 2021, through February 4, 2022, with follow-up data through May 31, 2022, at 93 sites in the US.InterventionsParticipants were randomized to receive ivermectin, 400 μg/kg (n = 817), daily for 3 days or placebo (n = 774).Main Outcomes and MeasuresTime to sustained recovery, defined as at least 3 consecutive days without symptoms. There were 7 secondary outcomes, including a composite of hospitalization or death by day 28.ResultsAmong 1800 participants who were randomized (mean [SD] age, 48 [12] years; 932 women [58.6%]; 753 [47.3%] reported receiving at least 2 doses of a SARS-CoV-2 vaccine), 1591 completed the trial. The hazard ratio (HR) for improvement in time to recovery was 1.07 (95% credible interval [CrI], 0.96-1.17; posterior P value [HR >1] = .91). The median time to recovery was 12 days (IQR, 11-13) in the ivermectin group and 13 days (IQR, 12-14) in the placebo group. There were 10 hospitalizations or deaths in the ivermectin group and 9 in the placebo group (1.2% vs 1.2%; HR, 1.1 [95% CrI, 0.4-2.6]). The most common serious adverse events were COVID-19 pneumonia (ivermectin [n = 5]; placebo [n = 7]) and venous thromboembolism (ivermectin [n = 1]; placebo [n = 5]).Conclusions and RelevanceAmong outpatients with mild to moderate COVID-19, treatment with ivermectin, compared with placebo, did not significantly improve time to recovery. These findings do not support the use of ivermectin in patients with mild to moderate COVID-19.Trial RegistrationClinicalTrials.gov Identifier: NCT04885530
ImportanceThe effectiveness of fluvoxamine to shorten symptom duration or prevent hospitalization among outpatients with mild to moderate symptomatic COVID-19 is unclear.ObjectiveTo evaluate the efficacy of low-dose fluvoxamine (50 mg twice daily) for 10 days compared with placebo for the treatment of mild to moderate COVID-19 in the US.Design, Setting, and ParticipantsThe ongoing Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV-6) platform randomized clinical trial was designed to test repurposed medications in outpatients with mild to moderate COVID-19. A total of 1288 participants aged 30 years or older with test-confirmed SARS-CoV-2 infection and experiencing 2 or more symptoms of acute COVID-19 for 7 days or less were enrolled between August 6, 2021, and May 27, 2022, at 91 sites in the US.InterventionsParticipants were randomized to receive 50 mg of fluvoxamine twice daily for 10 days or placebo.Main Outcomes and MeasuresThe primary outcome was time to sustained recovery (defined as the third day of 3 consecutive days without symptoms). There were 7 secondary outcomes, including a composite outcome of hospitalization, urgent care visit, emergency department visit, or death through day 28.ResultsAmong 1331 participants who were randomized (median age, 47 years [IQR, 38-57 years]; 57% were women; and 67% reported receiving ≥2 doses of a SARS-CoV-2 vaccine), 1288 completed the trial (674 in the fluvoxamine group and 614 in the placebo group). The median time to sustained recovery was 12 days (IQR, 11-14 days) in the fluvoxamine group and 13 days (IQR, 12-13 days) in the placebo group (hazard ratio [HR], 0.96 [95% credible interval, 0.86-1.06], posterior P = .21 for the probability of benefit [determined by an HR >1]). For the composite outcome, 26 participants (3.9%) in the fluvoxamine group were hospitalized, had an urgent care visit, had an emergency department visit, or died compared with 23 participants (3.8%) in the placebo group (HR, 1.1 [95% credible interval, 0.5-1.8], posterior P = .35 for the probability of benefit [determined by an HR <1]). One participant in the fluvoxamine group and 2 participants in the placebo group were hospitalized; no deaths occurred in either group. Adverse events were uncommon in both groups.Conclusions and RelevanceAmong outpatients with mild to moderate COVID-19, treatment with 50 mg of fluvoxamine twice daily for 10 days, compared with placebo, did not improve time to sustained recovery. These findings do not support the use of fluvoxamine at this dose and duration in patients with mild to moderate COVID-19.Trial RegistrationClinicalTrials.gov Identifier: NCT04885530
Classical models of the physiology of dystonia suggest that involuntary muscle contractions are caused by inappropriately low activity in Globus Pallidus internus (GPi) that fails to adequately inhibit thalamic inputs to cortex. We test this prediction in three children with primary dystonia undergoing depth electrode recording in basal ganglia and thalamus during selection of targets for deep brain stimulation (DBS) implantation. We compare muscle activity to the power in the spectrogram of the local field potential, as well as to counts of identified spikes in GPi, subthalamic nucleus (STN), and the Ventral oralis (VoaVop) and Ventral Anterior (VA) subnuclei of the thalamus, while subjects are at rest or attempting to make active voluntary arm or leg reaching movements. In all three subjects, both spectrogram power and spike activity in GPi, STN, VoaVop, and VA are significantly positively correlated with movement. In particular, GPi and STN both increase activity during attempted movement. These results contradict the classical rate model of the physiology of dystonia, and support more recent models that propose abnormalities in the detailed pattern of activity rather than the overall lumped activity of pallidum and thalamus.
BACKGROUND Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare genetic disease due to a TUBB4A mutation, with motor features including dystonia. Deep brain stimulation (DBS) can be used to treat dystonia in pediatric populations, although the response is highly variable and preferential toward specific etiologies. OBSERVATIONS A single pediatric subject with H-ABC received DBS using a staged procedure involving temporary depth electrode placement, identification of optimal stimulation targets, and permanent electrode implantation. After surgery, the patient significantly improved on both the Burke-Fahn-Marsden Dystonia Rating Scale and the Barry-Albright Dystonia Scale. The patient’s response suggests that DBS can have potential benefit in H-ABC. LESSONS TUBB4A mutations are associated with a variety of clinical phenotypes, and there is a lack of clearly identified targets for DBS, with this case being the second reported instance of DBS in this condition. The staged procedure with temporary depth electrode testing is recommended to identify optimal stimulation targets. The response seen in this patient implies that such a staged procedure may provide benefit in other conditions where DBS targets are currently unknown, including rare genetic or metabolic conditions associated with movement disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.