The recent outbreak of exserohilum rostratum meningitis linked to epidural injections of methylprednisolone acetate has brought renewed attention to mold infections of the central nervous system (CNS).1 Although uncommon, these infections are often devastating and difficult to treat. This focused review of the epidemiologic aspects, clinical characteristics, and treatment of mold infections of the CNS covers a group of common pathogens: aspergillus, fusarium, and scedosporium species, molds in the order Mucorales, and dematiaceous molds. Infections caused by these pathogen groups have distinctive epidemiologic profiles, clinical manifestations, microbiologic characteristics, and therapeutic implications, all of which clinicians should understand.
The emergence of drug-resistant fungi poses a major threat to human health. Despite advances in preventive, diagnostic, and therapeutic interventions, resistant fungal infections continue to cause significant morbidity and mortality in patients with compromised immunity, underscoring the urgent need for new antifungal agents. In this article, we review the challenges associated with identifying broad-spectrum antifungal drugs and highlight novel targets that could enhance the armamentarium of agents available to treat drug-resistant invasive fungal infections.
Farnesol exerts a synergistic or additive interaction with micafungin, fluconazole and amphotericin B against C. albicans biofilms, thus warranting further in vivo study.
Species of Scedosporium and Fusarium are considered emerging opportunistic pathogens, causing invasive fungal diseases in humans that are known as scedosporiosis and fusariosis, respectively. These mold infections typically affect patients with immune impairment; however, cases have been reported in otherwise healthy individuals. Clinical manifestations vary considerably, ranging from isolated superficial infection to deep-seated invasive infection—affecting multiple organs—which is often lethal. While there have been a number of advances in the detection of these infections, including the use of polymerase chain reaction (PCR) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS), diagnosis is often delayed, leading to substantial morbidity and mortality. Although the optimal therapy is controversial, there have also been notable advances in the treatment of these diseases, which often depend on a combination of antifungal therapy, reversal of immunosuppression, and in some cases, surgical resection. In this paper, we review these advances and examine how the management of scedosporiosis and fusariosis may change in the near future.
ImportanceThe effectiveness of ivermectin to shorten symptom duration or prevent hospitalization among outpatients in the US with mild to moderate symptomatic COVID-19 is unknown.ObjectiveTo evaluate the efficacy of ivermectin, 400 μg/kg, daily for 3 days compared with placebo for the treatment of early mild to moderate COVID-19.Design, Setting, and ParticipantsACTIV-6, an ongoing, decentralized, double-blind, randomized, placebo-controlled platform trial, was designed to evaluate repurposed therapies in outpatients with mild to moderate COVID-19. A total of 1591 participants aged 30 years and older with confirmed COVID-19, experiencing 2 or more symptoms of acute infection for 7 days or less, were enrolled from June 23, 2021, through February 4, 2022, with follow-up data through May 31, 2022, at 93 sites in the US.InterventionsParticipants were randomized to receive ivermectin, 400 μg/kg (n = 817), daily for 3 days or placebo (n = 774).Main Outcomes and MeasuresTime to sustained recovery, defined as at least 3 consecutive days without symptoms. There were 7 secondary outcomes, including a composite of hospitalization or death by day 28.ResultsAmong 1800 participants who were randomized (mean [SD] age, 48 [12] years; 932 women [58.6%]; 753 [47.3%] reported receiving at least 2 doses of a SARS-CoV-2 vaccine), 1591 completed the trial. The hazard ratio (HR) for improvement in time to recovery was 1.07 (95% credible interval [CrI], 0.96-1.17; posterior P value [HR >1] = .91). The median time to recovery was 12 days (IQR, 11-13) in the ivermectin group and 13 days (IQR, 12-14) in the placebo group. There were 10 hospitalizations or deaths in the ivermectin group and 9 in the placebo group (1.2% vs 1.2%; HR, 1.1 [95% CrI, 0.4-2.6]). The most common serious adverse events were COVID-19 pneumonia (ivermectin [n = 5]; placebo [n = 7]) and venous thromboembolism (ivermectin [n = 1]; placebo [n = 5]).Conclusions and RelevanceAmong outpatients with mild to moderate COVID-19, treatment with ivermectin, compared with placebo, did not significantly improve time to recovery. These findings do not support the use of ivermectin in patients with mild to moderate COVID-19.Trial RegistrationClinicalTrials.gov Identifier: NCT04885530
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.