SUMMARYHistamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-jB translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components.
Sarcoidosis is a complex systemic granulomatous disease of unknown etiology characterized by the presence of activated macrophages and Th1/Th17 effector cells. Data mining of our RNA-Seq analysis of CD14+monocytes showed enrichment for metabolic and hypoxia inducible factor (HIF) pathways in sarcoidosis. Further investigation revealed that sarcoidosis macrophages and monocytes exhibit higher protein levels for HIF-α isoforms, HIF-1β, and their transcriptional co-activator p300 as well as glucose transporter 1 (Glut1). In situ hybridization of sarcoidosis granulomatous lung tissues showed abundance of HIF-1α in the center of granulomas. The abundance of HIF isoforms was mechanistically linked to elevated IL-1β and IL-17 since targeted down regulation of HIF-1α via short interfering RNA or a HIF-1α inhibitor decreased their production. Pharmacological intervention using chloroquine, a lysosomal inhibitor, decreased lysosomal associated protein 2 (LAMP2) and HIF-1α levels and modified cytokine production. These data suggest that increased activity of HIF-α isoforms regulate Th1/Th17 mediated inflammation in sarcoidosis.
Although histamine plays an essential role in inflammation, its influence on cyclooxygenases (COX) and prostanoid homeostasis is not well understood. In this study, we investigated the effects of histamine on the expression of COX-1 and COX-2 and determined their contribution to the production of PGE2, prostacyclin (PGI2), and thromboxane A2 in human coronary artery endothelial cells (HCAEC). Incubation of HCAEC monolayers with histamine resulted in marked increases in the expression of COX-2 and production of PGI2 and PGE2 with no significant change in the expression of COX-1. Histamine-induced increases in PGI2 and PGE2 production were due to increased expression and function of COX-2 because gene silencing by small interfering RNA or inhibition of the catalytic activity by a COX-2 inhibitor blocked prostanoid production. The effects of histamine on COX-2 expression and prostanoid production were mediated through H1 receptors. In addition to the direct effect, histamine was found to amplify LPS-stimulated COX-2 expression and PGE2 and PGI2 production. In contrast, histamine did not stimulate thromboxane A2 production in resting or LPS-activated HCAEC. Histamine-induced increases in the production of PGE2 and PGI2 were associated with increased expression of mRNA encoding PGE2 and PGI2 synthases. The physiological role of histamine on the regulation of COX-2 expression in the vasculature is indicated by the findings that the expression of COX-2 mRNA, but not COX-1 mRNA, was markedly reduced in the aortic tissues of histidine decarboxylase null mice. Thus, histamine plays an important role in the regulation of COX-2 expression and prostanoid homeostasis in vascular endothelium.
Sarcoidosis is a multisystem granulomatous disease of unknown etiology that primarily affects the lungs. Our previous work indicates that activation of p38 plays a pivotal role in sarcoidosis inflammatory response. Therefore, we investigated the upstream kinase responsible for activation of p38 in sarcoidosis alveolar macrophages (AMs) and peripheral mononuclear cells (PBMCs). We identified that sustained p38 phosphorylation in sarcoidosis AMs and PBMCs is associated with active MKK4 but not with MKK3/6. Additionally, we found that sarcoidosis AMs exhibit a higher expression of IRAK1, IRAK-M and Rip2. Surprisingly, ex vivo treatment of sarcoidosis AMs or PBMCs with IRAK1/4 inhibitor led to a significant increase in IL-1β mRNA expression both spontaneously and in response to TLR2 ligand. However, a combination of Rip2 and IRAK-1/4 inhibitors significantly decreased both IL-1β and IL-6 production in sarcoidosis PBMCs and moderately in AMs. Importantly, a combination of Rip2 and IRAK-1/4 inhibitors led to decreased IFN-γ and IL-6, and decreased percentage of activated CD4+CD25+ cells in PBMCs. These data suggest that in sarcoidosis both pathways, namely IRAK and Rip2 are deregulated. Targeted modulation of Rip2 and IRAK pathways may prove to be a novel treatment for sarcoidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.