Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of “scar” DNA into the chromosome. Here, we describe a rapid, efficient, PCR-based recombineering method, FRUIT, that can be used to introduce scar-free point mutations, deletions, epitope tags, and promoters into the genomes of enteric bacteria. The efficiency of FRUIT is far higher than that of the most widely-used recombineering method for Escherichia coli. We have used FRUIT to introduce point mutations and epitope tags into the chromosomes of E. coli K-12, Enterotoxigenic E. coli, and Salmonella enterica. We have also used FRUIT to introduce constitutive and inducible promoters into the chromosome of E. coli K-12. Thus, FRUIT is a versatile, efficient recombineering approach that can be applied in multiple species of enteric bacteria.
cSal4 is a monoclonal polymeric IgA antibody directed against the O antigen (O-Ag) of Salmonella enterica serovar Typhimurium (S. Typhimurium), which is sufficient to protect mice against intestinal infections from S. Typhimurium. We recently reported that the exposure of S. Typhimurium to Sal4 results in the immediate loss of flagellum-based motility, in alterations to the outer membrane (OM) integrity, and in the concomitant appearance of a mucoid phenotype that is reminiscent of cells in the earliest stages of biofilm formation. We demonstrate here that prolonged (>4 h) exposure of S. Typhimurium to Sal4 at 37°C (but not at ambient temperature [25°C]) results in measurable exopolysaccharide (EPS) accumulation and biofilm formation on both borosilicate glass surfaces and polystyrene microtiter plates. The polysaccharide produced by S. Typhimurium in response to Sal4 contains cellulose, in addition to O-Ag capsule and colanic acid. EPS production was dependent on YeaJ, a proposed inner membrane-localized diguanylate cyclase (DGC) and a known regulator of cellulose biosynthesis. An S. Typhimurium ⌬yeaJ strain was unable to produce cellulose or form a biofilm in response to Sal4. Conversely, the overexpression of yeaJ in S. Typhimurium enhanced Sal4-induced biofilm formation and resulted in increased intracellular levels of cyclic dimeric guanosine monophosphate (c-di-GMP) compared to that of a wild-type control; this strongly suggests that YeaJ is indeed a functional DGC. Based on these data, we speculate that Sal4, by virtue of its ability to associate with the O-Ag and to induce OM stress, renders S. Typhimurium avirulent by triggering a c-di-GMP-dependent signaling pathway via YeaJ that leads to the suppression of bacterial motility while simultaneously stimulating EPS production.
Fimbriae, lipopolysaccharide (LPS), and extracellular polymeric substance (EPS) all contribute to biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans. To understand how individual biofilm determinants respond to changing environmental conditions, the transcription of genes responsible for fimbria, LPS, and EPS production, as well as the translation of these components, was determined in rough (Rv) and isogenic smooth (Sv) variants of A. actinomycetemcomitans cultured in half-strength and full-strength culture medium under anaerobic or aerobic conditions, and in iron-supplemented and iron-chelated medium. The transcription of tadV (fimbrial assembly), pgaC (extracellular polysaccharide synthesis), and orf8 or rmlB (lipopolysaccharide synthesis) was measured by real-time PCR. The amounts of fimbriae, LPS, and EPS were also estimated from stained sodium dodecyl sulfate-polyacrylamide gels and verified by Western blotting and enzyme-linked immunoadsorbent assay using specific antibodies. Each gene was significantly upregulated in the Rv compared to in the Sv. The transcription of fimbrial, LPS, and EPS genes in the Rv was increased approximately twofold in cells cultured in full-strength medium under anaerobic conditions compared to that in cells cultured under aerobic conditions. Under anaerobic conditions, the transcription of fimbrial and EPS enzymes was elevated in both Rv and Sv cells cultured in half-strength medium, compared to that in fullstrength medium. Iron chelation also increased the transcription and translation of all biofilm determinants compared to their expression with iron supplementation, yet the quantity of biofilm was not significantly changed by any environmental perturbation except iron limitation. Thus, anaerobic conditions, nutrient stress, and iron limitation each upregulate known biofilm determinants of A. actinomycetemcomitans to contribute to biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.