Colistin is increasingly being utilized against Gram-negative pathogens, including Pseudomonas aeruginosa, resistant to all other antibiotics. Since limited data exist regarding killing by colistin at different initial inocula (CFUo), we evaluated killing of Pseudomonas aeruginosa by colistin at several CFUo and developed a mechanism-based mathematical model accommodating a range of CFUo. In vitro time-kill experiments were performed using >8 concentrations up to 64 ؋ the MIC of colistin against P. aeruginosa PAO1 and two clinical P. aeruginosa isolates at CFUo of 10 6 , 10 8 , and 10 9 CFU/ml. Serial samples up to 24 h were simultaneously modeled in the NONMEM VI (results shown) and S-ADAPT software programs. The mathematical model was prospectively "validated" by additional time-kill studies assessing the effect of Ca 2؉ and Mg 2؉ on killing of PAO1 by colistin. Against PAO1, killing of the susceptible population was 23-fold slower at the 10 9 CFUo and 6-fold slower at the 10 8 CFUo than at the 10 6 CFUo. The model comprised three populations with different second-order killing rate constants (5.72, 0.369, and 0.00210 liters/h/mg). Bacteria were assumed to release signal molecules stimulating a phenotypic change that inhibits killing. The proposed mechanism-based model had a good predictive performance, could describe killing by colistin for all three studied strains and for two literature studies, and performed well in a prospective validation with various concentrations of Ca 2؉ and Mg 2؉ . The extent and rate of killing of P. aeruginosa by colistin were markedly decreased at high CFUo compared to those at low CFUo. This was well described by a mechanism-based mathematical model, which should be further validated using dynamic in vitro models.
cSal4 is a monoclonal polymeric IgA antibody directed against the O antigen (O-Ag) of Salmonella enterica serovar Typhimurium (S. Typhimurium), which is sufficient to protect mice against intestinal infections from S. Typhimurium. We recently reported that the exposure of S. Typhimurium to Sal4 results in the immediate loss of flagellum-based motility, in alterations to the outer membrane (OM) integrity, and in the concomitant appearance of a mucoid phenotype that is reminiscent of cells in the earliest stages of biofilm formation. We demonstrate here that prolonged (>4 h) exposure of S. Typhimurium to Sal4 at 37°C (but not at ambient temperature [25°C]) results in measurable exopolysaccharide (EPS) accumulation and biofilm formation on both borosilicate glass surfaces and polystyrene microtiter plates. The polysaccharide produced by S. Typhimurium in response to Sal4 contains cellulose, in addition to O-Ag capsule and colanic acid. EPS production was dependent on YeaJ, a proposed inner membrane-localized diguanylate cyclase (DGC) and a known regulator of cellulose biosynthesis. An S. Typhimurium ⌬yeaJ strain was unable to produce cellulose or form a biofilm in response to Sal4. Conversely, the overexpression of yeaJ in S. Typhimurium enhanced Sal4-induced biofilm formation and resulted in increased intracellular levels of cyclic dimeric guanosine monophosphate (c-di-GMP) compared to that of a wild-type control; this strongly suggests that YeaJ is indeed a functional DGC. Based on these data, we speculate that Sal4, by virtue of its ability to associate with the O-Ag and to induce OM stress, renders S. Typhimurium avirulent by triggering a c-di-GMP-dependent signaling pathway via YeaJ that leads to the suppression of bacterial motility while simultaneously stimulating EPS production.
For methicillin-resistant Staphylococcus aureus (MRSA) infections, data suggest that the clinical response is significantly better if the total vancomycin area under the concentration-time curve (AUC)/MIC ratio is >400. While the AUC/MIC ratio is the accepted pharmacokinetic/pharmacodynamic (PK/PD) index for vancomycin, this target has been achieved using multiple daily doses. We are unaware of a systematically designed dose fractionation study to compare the bactericidal activity of once-daily administration to that of traditional twice-daily administration. A dose fractionation study was performed with vancomycin in an in vitro hollow-fiber infection model against an MRSA USA300 strain (MIC of 0.75 g/ml) using an inoculum of ϳ10 6 CFU/ ml. The three vancomycin regimens evaluated for 168 h were 2 g every 24 h (q24h) as a 1-h infusion, 1 g q12h as a 1-h infusion, and 2 g q24h as a continuous infusion. Free steady-state concentrations (assuming 45% binding) for a total daily AUC/MIC ratio of >400 were simulated for all regimens. A validated liquid chromatography-tandem mass spectrometry method was used to determine vancomycin concentrations. Although once-daily and twice-daily dosage regimens exhibited total trough concentrations of <15 g/ml, all regimens achieved similar bactericidal activities between 24 and 168 h and suppressed the amplification of nonsusceptible subpopulations. No colonies were found on agar plates with 3؋ MIC for any of the treatment arms. Overall, the results suggest that once-daily vancomycin administration is feasible from a PK/PD perspective and merits further inquiry in the clinical arena. Given the dual threat of diminishing vancomycin efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and recent reports of rising nephrotoxicity (10, 22) (albeit potentially due to concomitant dosing increases), new vancomycin dosing strategies are urgently needed. From a pharmacodynamic viewpoint, there is an opportunity to alter standard dosage regimens of vancomycin in clinical practice to optimize outcomes and minimize toxicity. Data suggest that killing by vancomycin is concentration dependent, and a near-maximal bactericidal effect is achieved against MRSA when the ratio of the area under the total vancomycin concentration-time curve (AUC) to the MIC exceeds 400 (22). While an AUC/MIC ratio of 400 is a well-recognized pharmacokinetic/pharmacodynamic (PK/PD) target for vancomycin, this target has been determined using multiple daily doses, which has resulted in the default stance of using multiple-daily-dosing regimens in clinical practice (4,5,7,9,12,13,20,21). The possibility of once-daily administration is appealing from a PK/PD perspective, as it affords the ability to achieve more robust AUCs in a defined interval (i.e., during the first 6 to 12 h) while minimizing trough concentrations, which predicts nephrotoxicity (10). However, we are unaware of a systematically designed dose fractionation study that compared the bactericidal activity of a once-daily administration of vanc...
Cytochrome P450 (P450) enzymes are a superfamily of heme-containing enzymes involved in the metabolism of various endogenous compounds, including retinoids, glucocorticoids, and eicosanoids, that are postulated to participate in the maintenance and/or development of inflammatory and immune reactions in the intestinal mucosa. To investigate the role of P450 enzymes in intestinal inflammation and immunity, we took advantage of IE-Cpr-null mice, which are deficient in intestinal epithelium of NADPH-cytochrome P450 reductase (CPR), the obligate redox partner of all microsomal P450 enzymes. We report that IE-Cpr-null mice, following an acute toxin challenge, had higher levels of pro-inflammatory chemokines and increased tissue damage compared to wild-type mice. IE-Cpr-null mice had normal Peyer's patch numbers and elicited normal secretory IgA (SIgA) responses. However, SIgA baseline levels in IE-Cpr-null mice were consistently elevated over WT littermates. While neither retinoic acid nor glucocorticoid levels in serum and intestinal homogenates were altered in IE-Cpr-null mice, basal levels of arachidonic acid metabolites (11,12-DiHETE and 14,15-DiHETE) with known anti-inflammatory property were significantly lower compared to WT controls. Overall, these findings reveal immunological and metabolic changes resulting from a genetic deficiency in CPR expression in the intestine, and support a role for microsomal P450 enzymes in mucosal homeostasis and immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.