Background Sri Lanka is a continental island separated from India by the Palk Strait, a shallow-shelf sea, which was emergent during periods of lowered sea level. Its biodiversity is concentrated in its perhumid south-western ‘wet zone’. The island’s freshwater fishes are dominated by the Cyprinidae, characterized by small diversifications of species derived from dispersals from India. These include five diminutive, endemic species of Pethia (P. bandula, P. cumingii, P. melanomaculata, P. nigrofasciata, P. reval), whose evolutionary history remains poorly understood. Here, based on comprehensive geographic sampling, we explore the phylogeny, phylogeography and morphological diversity of the genus in Sri Lanka. Results The phylogenetic analyses, based on mitochondrial and nuclear loci, recover Sri Lankan Pethia as polyphyletic. The reciprocal monophyly of P. bandula and P. nigrofasciata, and P. cumingii and P. reval, is not supported. Pethia nigrofasciata, P. cumingii, and P. reval show strong phylogeographic structure in the wet zone, compared with P. melanomaculata, which ranges across the dry and intermediate zones. Translocated populations of P. nigrofasciata and P. reval in the Central Hills likely originate from multiple sources. Morphological analyses reveal populations of P. nigrofasciata proximal to P. bandula, a narrow-range endemic, to have a mix of characters between the two species. Similarly, populations of P. cumingii in the Kalu basin possess orange fins, a state between the red-finned P. reval from Kelani to Deduru and yellow-finned P. cumingii from Bentara to Gin basins. Conclusions Polyphyly in Sri Lankan Pethia suggests two or three colonizations from mainland India. Strong phylogeographic structure in P. nigrofasciata, P. cumingii and P. reval, compared with P. melanomaculata, supports a model wherein the topographically complex wet zone harbors greater genetic diversity than the topographically uniform dry-zone. Mixed morphological characters between P. bandula and P. nigrofasciata, and P. cumingii and P. reval, and their unresolved phylogenies, may suggest recent speciation scenarios with incomplete lineage sorting, or hybridization.
Ranaviral infections, a malady of ectothermic vertebrates, are becoming frequent, severe, and widespread, causing mortality among both wild and cultured species, raising odds of species extinctions and economic losses. This increase in infection is possibly due to the broad host range of ranaviruses and the transmission of these pathogens through regional and international trade in Asia, where outbreaks have been increasingly reported over the past decade. Here, we focus attention on the origins, means of transmission, and patterns of spread of this infection within the region. Infections have been recorded in both cultured and wild populations in at least nine countries/administrative regions, together with mass die‐offs in some regions. Despite the imminent seriousness of the disease in Asia, surveillance efforts are still incipient. Some of the viral strains within Asia may transmit across host–taxon barriers, posing a significant risk to native species. Factors such as rising temperatures due to global climate change seem to exacerbate ranaviral activity, as most known outbreaks have been recorded during summer; however, data are still inadequate to verify this pattern for Asia. Import risk analysis, using protocols such as Pandora+, pre‐border pathogen screening, and effective biosecurity measures, can be used to mitigate introduction of ranaviruses to uninfected areas and curb transmission within Asia. Comprehensive surveillance using molecular diagnostic tools for ranavirus species and variants will help in understanding the prevalence and disease burden in the region. This is an important step toward conserving native biodiversity and safeguarding the aquaculture industry.
In Sri Lanka thirty species of cetaceans have been recorded to date. The canyon at Trincomalee bay is a multiple submarine canyon complex and anecdotal reports suggest that the Trincomalee bay and its adjacent waters are utilised by a number of cetacean species. Though Cetaceans are known to be abundant in the waters off Trincomalee there is a dearth of research and data pertaining to the abundance and species frequenting the Trincomalee bay and its adjacent waters. As such the current study was initiated, to get a consensus of the abundance and occurrences of species in Trincomalee Bay and its adjacent waters. Field surveys were carried out for 19 months and the research platform was a 35-foot commercial fishing vessel. 177 cetacean encounters were recorded on 67 of the 75 field days. Remarkably a total of 11 species of cetaceans which composed of two species of Baleen Whales and nine species of Toothed Whales were recorded. Delphinidae was the most common family recorded, followed by Balaenopteridae, Ziphiidae, Physeteridae, and Kogiidae. Spinner Dolphins were the most abundant cetacean owing to the large pods observed and the regularity of the sightings. They were the only species seen feeding/traveling with birds and fish (tuna). Sperm Whales, Blue Whales, and Bryde’s Whales were also relatively common. Two records of interspecific association between cetaceans were recorded. The increase in the human population in the study area has resulted in the overexploitation of marine resources which has dire repercussions on the marine mammal communities found in these waters.
A recent (2013) taxonomic review of the freshwater-fish genus Rasboroides, which is endemic to Sri Lanka, showed it to comprise four species: R. vaterifloris, R. nigromarginatus, R. pallidus and R. rohani. Here, using an integrative-taxonomic analysis of morphometry, meristics and mitochondrial DNA sequences of cytochrome b (cytb) and cytochrome oxidase subunit 1 (coi), we show that R. nigromarginatus is a synonym of R. vaterifloris, and that R. rohani is a synonym of R. pallidus. The creation and recognition of unnecessary taxa (‘taxonomic inflation’) was in this case a result of selective sampling confounded by a disregard of allometry. The population referred to R. rohani in the Walawe river basin represents an undocumented trans-basin translocation of R. pallidus, and a translocation into the Mahaweli river of R. vaterifloris, documented to have occurred ca 1980, in fact involves R. pallidus. A shared haplotype suggests the latter introduction was likely made from the Bentara river basin and not from the Kelani, as claimed. To stabilize the taxonomy of these fishes, the two valid species, R. vaterifloris and R. pallidus, are diagnosed and redescribed, and their distributions delineated. We draw attention to the wasteful diversion of conservation resources to populations resulting from undocumented translocations and to taxa resulting from taxonomic inflation. We argue against translocations except where mandated by a conservation emergency, and even then, only when supported by accurate documentation.
The greatest threat to cetaceans in Sri Lankan waters was considered to be the direct take of small-and medium-sized cetaceans using harpoons and/or as bycatch until recently. However, ship strikes have probably been occurring for years but have not been recognized for what they were. For the current study, only animals with visible and prominent injuries related to collisions were evaluated. Data gathered between 2010 and 2014 included the species, morphometry, location, and date; tissue samples were collected for genetic analysis. When possible, a complete necropsy was conducted; otherwise, partial necropsies were conducted. The study confirmed 14 reports of ship strikes between whales and vessels out of all the strandings reported from 2010 to 2014. Most strikes ( = 09, 64%) involved blue whales (Balaenoptera musculus), although three other species were also documented, one Cuvier's beaked whale, two great sperm whales, and one Bryde's whale, as well as one unidentified baleen whale. Collision hotspots such as the southern waters of Sri Lanka are areas that warrant special attention in the form of vessel routing measures or speed limits, research on cetacean ecology, distribution, daily and seasonal movements, public service announcements, increased law enforcement presence, and other measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.