Background and objectives: Biofilm formation is an important virulence factor that protects an organism from antimicrobial agents as well as host immune effectors, thus allowing organisms to invade, survive, and cause persistent-reoccurring infection in host cells. The aim of this study was to investigate the ability of sepsis-causing gram-negative bacteria to form biofilms, evaluate the association between antibiotic resistance pattern and biofilm formation, determine the role and influence of biofilm formation on pathogenicity and clinical outcome of sepsis. Methods: A prospective study conducted from October 2020 to August 2021, non-replicated gram-negative bacteria isolates were recovered from blood samples of patients with suspected bacteremia, sepsis, and sepsis shock and identified using biochemical procedures. Antimicrobial susceptibility patterns of GNB isolates were determined using the Kirby-Bauer disc diffusion method and interpreted using CLSI guidelines. The ability of GNB isolates to form biofilm was assessed using Congo red agar and the tissue culture plate method. Results: Of the 160 Gram-negative bacteria tested, biofilm formation was seen in 73 (45.63%) isolates. Isolates are Klebsiella pneumoniae (39.73%), Acinetobacter spp. (34.25%), Escherichia coli (23.29%), Pseudomonas aeruginosa (1.37%), and other non-fermenters (1.37%). Isolates were highly resistant to cephalosporins, fluoroquinolones, and the penicillin group of antibiotics. No statistical relationship was found between resistance pattern, clinical outcome, and biofilm formation. Conclusion: In the current study, we found that 45.63% of gram-negative bacteria causing sepsis were biofilm producers. Klebsiella pneumonia isolates exhibited the highest levels of biofilm formation and antimicrobial resistance. Based on the strength of biofilm formation, most isolates were weak biofilm producers, and there was no statistical correlation between the formation of biofilms and antimicrobial resistance, indicating that the formation of biofilms was not a determining factor for resistance.
Severe Acute Respiratory Syndrome Corona Virus-2 infection is a universal threat in recent days, hence early diagnosis and treatment play a pivotal role in controlling the spread thereby preventing them to become endemic. A newer promising approach by Nanotechnology plays an essential role in targeting the specific pathogens for therapeutic and diagnosis of Viral infection. Certain Nano platforms like Microneedle array delivered Virus S1 subunit vaccines, spike protein nanoparticles, Lumazine synthase Nanoparticles, Silver Nanoparticles, Self-Assembling Protein Nanoparticles against Viral therapy are the upcoming applications as a therapeutic approach. Nucleic acid amplification techniques and Surface-enhanced Raman Spectroscopy shows a high specificity with the immunoassay strategy. In recent days, Colloidal Gold – Nanoparticles and silicon nanoparticles have been widely used as a point of care for quick detection of IgG and IgM antibodies obtained from the virus as a diagnostic approach. Additionally, the Nanoparticles serve as a significant improvement in Personal Protective Equipment and protect against exposure to the virus. As a result of repurposing as well as for the development of the drug, apparently, Nanoparticles themselves and their concomitant therapy or their carriers will be advantageous in making a therapeutic and diagnostic approach against Severe Acute Respiratory Syndrome Corona Virus-2 infections.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) possess high mortality and morbidity across the globe. In India, BBV-152 (CovaxinTM) and ChAdOx1-nCOV (CovishieldTM) vaccines are now being used to limit the spread of SARS-CoV-2 Infection. A Cross sectional observational study was designed to analyze the Antibody immune response to SARS CoV-2 vaccine quantitatively among Health Care Workers and it was correlated with age, sex, other comorbidities and blood group. A total of 160 fully vaccinated HCWs, the Anti-SARS-CoV-2 level was estimated by using Chemiluminescence Immuno Assay. A protective immune response following the complete course of the SARS-CoV-2 vaccine should be ≥ 1.00 S/C. A total of 160 HCWs (82 Male, 78 Female) who had completed both the doses of Covishield (n=128) and Covaxin (n=32). Both the vaccine recipient had mild to moderate symptoms and none of the HCWs had severe adverse events after administration of vaccine. Out of which, 143 (89.3%) HCWs showed seropositive and 17 (10.7%) HCWs showed seronegative. There was no notable variation in sex and other co-morbidities. Significantly, reduced antibody titers towards SARS-CoV-2 vaccine was noted among individuals aged ≤ 60 years and O+ve Blood group. Both the vaccines obtained successful immune response after their complete course, even though there was a significantly higher seropositivity rate in Covishield in spite of Covaxin recipients. Further, genomic correlative advanced studies can conclude the significance of non-responsiveness to SARS-CoV-2 vaccines among the HCWs.
Non-responder refers to an individual did not develop their anti HBs, even after administration of a 2 complete series of the HBV vaccine. Due to mutant variants, vaccine failure occurred in numerous reports but the incidence of these mutants were unknown. Primary HBV vaccine series failed for nearly 5% of immunocompetent people. There is no clear vision on nonresponse but certain individuals are at major risk, those with persistent diseases, immunosuppressant medication and genetic predisposition. CD-4 T-helper cells that was obtained from viral peptides played an important role in Human Leukocyte antigen (HLA) along with Major Histocompatibility Complex (MHC) and individuals who failed to respond had defect in T helper cells stimulation or antigen presentation. After administration of a course of vaccine, antibody will be produced against major hydrophilic domain of HBsAg in determinant epitope cluster. As upcoming approaches, antigen dose were increased, alternative vaccination, new adjuvants such as immunostimulatory DNA sequences and accelerating vaccination schedules are followed in practice. Increased dosage vaccines, upgraded immunogenicity, adjuvants, surrogate mechanism, combined vaccines and administration of intradermal vaccines are the relevant approaches for a non-responder. Further studies has to be conducted on HLA alleles that can overcome the obstacles in HBV therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.