In order to understand the major sources of particulate organic carbon (POC) in the frontal zones and to examine their variability with space and time, a total of five temperature fronts of different ages was sampled in the northeastern Arabian Sea during winter. Compared to the nonfrontal regions, POC and chlorophyll‐a were higher within the coastal fronts, whereas chlorophyll‐a was lower within the open ocean front (T1). The variation of POC between coastal and open ocean fronts is attributed to the combined influence of variable vertical mixing, heterotrophic transformation and age of the front. Relatively depleted δ13CPOC and δ15NPN were observed within the fronts, suggesting that POC pool is contributed by in situ production supported by upwelling of nutrient‐rich water and zooplankton biomass. Elemental C:N ratios, POC:Chl‐a, δ13CPOC, and δ15NPN suggest that POC is mainly contributed from primary producers and heterotrophs in the study region. However, relative contributions from these two sources vary spatially from coastal to open ocean and with the age of the front. Stable Isotope Analysis in R (SIAR) model revealed that zooplankton biomass largely contributed to POC in the open ocean (60–80%) than phytoplankton (20–40%) and nearly equal contribution was observed in the coastal fronts (50–60% and 40–50%, respectively). This study, thus, demonstrates that dominant heterotrophy and autotrophy in the open ocean and coastal fronts and it is consistent with their biomasses. Predominant heterotrophy in the open ocean is attributed to deeper mixed layer resulting in upwelling of bacteria‐rich and phytoplankton‐poor water to surface leading to existence of microbial loop.
In estuaries, detrital (i.e., non-living) organic matter (OM) contributes significantly to the particulate organic matter (POM) pool and we hypothesize that it may be a major source of estuarine zooplankton diet. To test this hypothesis, the isotopic composition of carbon (d13C) and nitrogen (d15N) of phytoplankton, zooplankton, and POM was assessed in the Godavari estuary (Bay of Bengal, Indian Ocean) during wet (November) and dry periods (January). As a result of higher riverine discharge, POM concentrations and values of the C/Chl-a ratio during the wet period were higher than those measured during the dry one. Relatively lower δ13CPOM values were observed during wet than dry period and contrasting to that was found for δ15NPOM. Detritus from fresh water algae and C3 plants contributed significantly to the POM pool during the wet and dry period, respectively. Based on isotopic mixing model, detrital OM and phytoplankton mostly characterized the POM pools during the wet and dry periods, respectively. Accordingly, our results suggest also that the zooplankton diet was mostly supported by detrital OM during the wet period and by both phytoplankton and detrital OM during the dry one. The zooplankton trophic level (TL, 2.7) during the wet period was relatively higher than that (1.9) during the dry one, suggesting a relative higher preference for detritus than phytoplankton during the wet period. The results of this study allowed us confirming that detrital OM can significantly support zooplankton production in the Godavari estuary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.