Purpose: p95HER2 is an NH 2 -terminally truncated form of HER2 that lacks the trastuzumab binding site and is therefore thought to confer resistance to trastuzumab treatment. In this report, we introduce a new antibody that has enabled the first direct quantitative measurement of p95HER2 in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. We sought to show that quantitative p95HER2 levels would correlate with outcome in trastuzumab-treated HER2-positive metastatic breast cancer.Experimental Design: The novel p95HER2 antibody used here was characterized for sensitivity, specificity, and selectivity over full-length HER2. Quantitative p95HER2 levels were measured in 93 metastatic breast tumors using a VeraTag FFPE assay to determine the correlation of p95HER2 levels with outcomes.Results: Within a cohort of trastuzumab-treated metastatic breast cancer patients, high levels of p95HER2 were found to correlate with shorter progression-free survival [hazard ratio (HR), 1.9; P = 0.017] and overall survival (HR, 2.2; P = 0.012) in patients with tumors selected to be HER2 positive by the VeraTag HER2 assay. For those with tumors found to be fluorescence in situ hybridization positive, elevated p95HER2 correlated similarly with shorter progression-free survival (HR, 1.8; P = 0.022) and overall survival (HR, 2.2; P = 0.009).Conclusions: We have successfully generated an antibody that can specifically detect p95HER2, and developed an assay to quantify expression in FFPE tumor specimens. Using this novel assay, we have identified a group of HER2-positive patients expressing p95HER2 that have a worse outcome while on trastuzumab. As p95HER2 retains sensitivity to kinase inhibitors, measurement of p95HER2 in breast tumor sections may be useful in guiding treatment for patients with HER2-positive breast cancer.Clin Cancer Res; 16(16); 4226-35. ©2010 AACR.
Mutations in copper/zinc superoxide dismutase 1 (SOD1), a genetic cause of human amyotrophic lateral sclerosis, trigger motoneuron death through unknown toxic mechanisms. We report that transgenic SOD1G93A mice exhibit striking and progressive changes in neuronal microtubule dynamics from an early age, associated with impaired axonal transport. Pharmacologic administration of a microtubule-modulating agent alone or in combination with a neuroprotective drug to symptomatic SOD1G93A mice reduced microtubule turnover, preserved spinal cord neurons, normalized axonal transport kinetics, and delayed the onset of symptoms, while prolonging life by up to 26%. The degree of reduction of microtubule turnover was highly predictive of clinical responses to different treatments. These data are consistent with the hypothesis that hyperdynamic microtubules impair axonal transport and accelerate motor neuron degeneration in amyotrophic lateral sclerosis. Measurement of microtubule dynamics in vivo provides a sensitive biomarker of disease activity and therapeutic response and represents a new pharmacologic target in neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS)2 is a late-onset, progressive neurodegenerative disease affecting motoneurons (1). The etiology of the majority of ALS cases is unknown, but ϳ20% of familial disease cases are due to mutations in copper-zinc superoxide dismutase1 (SOD1) (2). This led to the development of SOD1 transgenic mice as models of disease (2-5).Physically, motoneurons are unique, representing the longest cells in the body, with axons of some motoneurons in the spinal cord extending a meter or more to reach an end organ. As a result of this morphology, exceptional demands are placed on motoneurons. Active transport along lengthy axons is required to convey newly made materials from the cell body to the farthest nerve endings, and to convey nutrients and metabolites back to the cell body. Microtubules are an essential component of the neuron's scaffold and represent the "roadway," or conveyer belt, that neurons use to transport nutrients (6 -10). Microtubule-based transport is mandatory for survival of motoneurons and muscle cells; changes in slow axonal transport have been linked to neuropathogenesis in mutant SOD1 transgenic mice (11-13). In addition, the assembly and disassembly of microtubule polymers in motoneurons is highly responsive to cellular insults, such as excitotoxic stimuli (8, 14 -16).The relation between dynamics of microtubules and neuronal pathogenesis has not been explored in detail, in part due to limited techniques for measuring microtubule dynamics in vivo. In most non-neuronal cells, tubulin dimers and microtubule polymers exist in rapid dynamic equilibrium, as we have recently shown in vivo by isotopic labeling (17). In neurons, however, this rapid turnover of axonal and dendritic microtubules is believed to be less dynamic due to their interactions with a specific subclass of microtubule-associated proteins (MAPs) (18 -20). This stability of microtubule...
Trastuzumab is effective in the treatment of HER2/neu over-expressing breast cancer, but not all patients benefit from it. In vitro data suggest a role for HER3 in the initiation of signaling activity involving the AKT–mTOR pathway leading to trastuzumab insensitivity. We sought to investigate the potential of HER3 alone and in the context of p95HER2 (p95), a trastuzumab resistance marker, as biomarkers of trastuzumab escape. Using the VeraTag® assay platform, we developed a dual antibody proximity-based assay for the precise quantitation of HER3 total protein (H3T) from formalin-fixed paraffin-embedded (FFPE) breast tumors. We then measured H3T in 89 patients with metastatic breast cancer treated with trastuzumab-based therapy, and correlated the results with progression-free survival and overall survival using Kaplan–Meier and decision tree analyses that also included HER2 total (H2T) and p95 expression levels. Within the sub-population of patients that over-expressed HER2, high levels of HER3 and/or p95 protein expression were significantly associated with poor clinical outcomes on trastuzumab-based therapy. Based on quantitative H3T, p95, and H2T measurements, multiple subtypes of HER2-positive breast cancer were identified that differ in their outcome following trastuzumab therapy. These data suggest that HER3 and p95 are informative biomarkers of clinical outcomes on trastuzumab therapy, and that multiple subtypes of HER2-positive breast cancer may be defined by quantitative measurements of H3T, p95, and H2T.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-013-2665-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.