Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer’s disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD.
Hyperphosphorylation of tau is a characteristic of Alzheimer's disease (AD). Our group has established a model for tau hyperphosphorylation by mutating 10 residues from Ser/Thr to Glu to simulate the negative charge of phosphorylated residues ("pseudohyperphosphorylated (PHP)-tau").In order to analyze temporal and spatial effects of hyperphosphorylation of tau in a systemic context, we have established transgenic mouse lines that express human wild-type (wt)-or PHP-tau under the control of the CamKIIalpha-promoter that leads to a forebrain specific moderate expression in neurons, i.e. the region where also taupathology in AD is abundant.For the evaluation of tau-induced changes in the transgenic mice, we quantified spine densities in the neocortex and hippocampus of transgenic mice. The spine densitiy was significantly increased in PHP-tau compared to wt-tau expressing mice. It is known that AD is associated with aberrant pre-and postsynaptic sprouting. Axonal sprouting is also observed in transgenic mice expressing mutated amyloid precursor protein (APP), which suggests that Abeta plays a significant role in this process.We deduce from our results, that (pseudo)-hyperphosphorylation of tau is sufficient to induce aberrant sprouting in the absence of Abeta. Analyses whether this sprouting is induced by pre-or postsynaptic changes and if functionally active synapses are formed are in progress. It will be interesting to determine if stabilization of these newly formed synapses slows or -in contrary -accelerates the progression of the disease.Sprouting as observed in our PHP-tau expressing mice is part of neuronal differentiation. One family of enzymes that is involved in cell differentiation are mitogen-acitvated protein kinases (MAPK). Western blot analysis was performed with brain lysates from transgenic mice to check whether PHP-tau induced sprouting is associated with MAPK activation. In fact, we also observed an increased activation of the MAPK ERK1/2 evident by phosphorylation of the residues Thr202 and Tyr204. ERK1/2 is also known to phosphorylate tau at sites characteristic for AD. Our results suggest the presence of a vicious circle by which (pseudo)-hyperphosphorylated tau activates ERK1/2 which in turn phosphorylates tau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.