Multi-plant production planning problem deals with the determination of type and quantity of products to produce at the plants over multiple time periods. Hierarchical production planning provides a formal bridge between long-term plans and short-term schedules. A hybrid simulation-based hierarchical production planning architecture consisting of system dynamics (SD) components for the enterprise level planning and discrete event simulation (DES) components for the shop-level scheduling is presented. The architecture consists of the Optimizer, Performance Monitor and Simulator modules at each decision level. The Optimizers select the optimal set of control parameters based on the estimated behaviour of the system. The enterprise-level simulator (SD model) and shoplevel simulator (DES model) interact with each other to evaluate the plan. Feedback control loops are employed at each level to monitor the performance and update the control parameters. Functional and process models of the proposed architecture are specified using IDEF. The internal mechanisms of the modules are also described. The modules are interfaced using High Level Architecture (HLA). Experimental results from a multi-product multi-facility manufacturing enterprise demonstrate the potential of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.