Highly efficient human skin systems transmit fast adaptive (FA) and slow adaptive (SA) pulses selectively or consolidatively to the brain for a variety of external stimuli. The integrated analysis of these signals determines how humans perceive external physical stimuli. Here, a self-powered mechanoreceptor sensor based on an artificial ion-channel system combined with a piezoelectric film is presented, which can simultaneously implement FA and SA pulses like human skin. This device detects stimuli with high sensitivity and broad frequency band without external power. For the feasibility study, various stimuli are measured or detected. Vital signs such as the heart rate and ballistocardiogram can be measured simultaneously in real time. Also, a variety of stimuli such as the mechanical stress, surface roughness, and contact by a moving object can be distinguished and detected. This opens new scientific fields to realize the somatic cutaneous sensor of the real skin. Moreover, this new sensing scheme inspired by natural sensing structures is able to mimic the five senses of living creatures.
Abstract.Forests play an important role in the global carbon (C) cycle, and the South Korean forests also contribute to this global C cycle. While the South Korean forest ecosystem was almost completely destroyed by exploitation and the Korean War, it has successfully recovered because of nationalscale reforestation programs since 1973. There have been several studies on the estimation of C stocks and balances over the past decades in the South Korean forests. However, a retrospective long-term study that includes biomass and dead organic matter C and validates dead organic matter C is still lacking. Accordingly, we estimated the C stocks and their changes of both biomass and dead organic matter C during the 1954-2012 period using a process-based model, the Korean Forest Soil Carbon model, and the 5th South Korean national forest inventory (NFI) report. Validation processes were also conducted based on the 5th NFI and statistical data. Simulation results showed that the biomass C stocks increased from 36.4 to 440.4 Tg C at a rate of 7.0 Tg C yr −1 during the period 1954-2012. The dead organic matter C stocks increased from 386.0 to 463.1 Tg C at a rate of 1.3 Tg C yr −1 during the same period. The estimates of biomass and dead organic matter C stocks agreed well with observed C stock data. The annual net biome production (NBP) during the period 1954-2012 was 141.3 g C m −2 yr −1 , which increased from −8.8 g C m −2 yr −1 in 1955 to 436.6 g C m −2 yr −1 in 2012. Because of the small forested area, the South Korean forests had a comparatively lower contribution to the annual C sequestration by global forests. In contrast, because of the extensive reforestation programs, the NBP of South Korean forests was much higher than those of other countries. Our results could provide the forest C dynamics in South Korean forests before and after the onset of reforestation programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.