Magnesium is a critical mineral in the human body and is involved in ~80% of known metabolic functions. It is currently estimated that 60% of adults do not achieve the average dietary intake (ADI) and 45% of Americans are magnesium deficient, a condition associated with disease states like hypertension, diabetes, and neurological disorders, to name a few. Magnesium deficiency can be attributed to common dietary practices, medications, and farming techniques, along with estimates that the mineral content of vegetables has declined by as much as 80–90% in the last 100 years. However, despite this mineral’s importance, it is poorly understood from several standpoints, not the least of which is its unique mechanism of absorption and sensitive compartmental handling in the body, making the determination of magnesium status difficult. The reliance on several popular sample assays has contributed to a great deal of confusion in the literature. This review will discuss causes of magnesium deficiency, absorption, handling, and compartmentalization in the body, highlighting the challenges this creates in determining magnesium status in both clinical and research settings.
These novel findings highlight the potential clinical utility of B12-Ex4 conjugates as possible future T2DM therapeutics with reduced incidence of adverse effects.
Highlights d The Cbi-Ex4 conjugate retains GLP-1R agonism in vitro and improved half-life in vivo d Cbi-Ex4 displays similar glucoregulatory properties compared to native Ex4 d Cbi-Ex4 does not induces anorexia, weight loss, or hindbrain neuronal activation d In contrast to Ex4, Cbi-Ex4 does not cause emesis indicative of improved tolerance
Previous studies identify a role for hypothalamic glia in energy balance regulation; however, a narrow hypothalamic focus provides an incomplete understanding of how glia throughout the brain respond to and regulate energy homeostasis. We examined the responses of glia in the dorsal vagal complex (DVC) to the adipokine leptin and high fat diet-induced obesity. DVC astrocytes functionally express the leptin receptor; in vivo pharmacological studies suggest that DVC astrocytes partly mediate the anorectic effects of leptin in lean but not diet-induced obese rats. Ex vivo calcium imaging indicated that these changes were related to a lower proportion of leptin-responsive cells in the DVC of obese versus lean animals. Finally, we investigated DVC microglia and astroglia responses to leptin and energy balance dysregulation in vivo: obesity decreased DVC astrogliosis, whereas the absence of leptin signaling in Zucker rats was associated with extensive astrogliosis in the DVC and decreased hypothalamic micro-and astrogliosis. These data uncover a novel functional heterogeneity of astrocytes in different brain nuclei of relevance to leptin signaling and energy balance regulation.
Vitamin B12, or cobalamin (Cbl), is an essential nutrient. Acquisition, transport, and cellular internalization of Cbl are dependent on specific binding proteins and associated receptors. The circulating transport protein transcobalamin (TC) promotes cellular uptake via binding to specific receptors such as CD320, a receptor upregulated in several cancer cell lines. In this study, we report the successful synthesis of 89Zirconium-labeled Cbl that was derivatized with desferrioxamine (89Zr-Cbl). We document the purity of the tracer and its binding to TC compared with that of unmodified cyano-Cbl (CN-Cbl). In vitro studies employing the CD320 receptor-positive breast cancer cell line MDA-MB-453 showed a 6- to 10-fold greater uptake of 89Zr-Cbl when compared with the uptake in the presence of 200-fold excess of CN-Cbl at 37 °C. We used nude mice with MDA-MB-453 tumors to study the feasibility of employing the tracer to visualize CD320 positive tumors. In vivo positron emission tomography images displayed a clear visualization of the tumor with 1.42 ± 0.48 %ID/g uptake (n = 3) at 4 h after injection (p.i.) with the tracer retained at 48 h p.i. Ex vivo biodistribution studies using 89Zr-Cbl exhibited the highest uptake in kidney and liver at 48 h p.i. Results document the feasibility of synthesizing a Cbl-based tracer suitable for both in vivo and ex vivo studies of Cbl trafficking and with the potential to visualize tumors expressing TC receptors, such as CD320.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.