Maternal ability to match nest characteristics with environmental conditions can influence offspring survival and quality, and may provide a mechanism by which animals can keep pace with climate change. In species with temperaturedependent sex determination that construct subterranean nests, the depth of the nest may affect incubation temperatures, and thus offspring sex ratio. Maternal adjustment of nest depth may be a mechanism by which climate change-induced sex ratio skews could be prevented in globally imperiled taxa such as turtles. We experimentally manipulated nest depth within a biologically relevant range in nests of the model turtle species Chrysemys picta. We then quantified the effects of nest depth on incubation regime, offspring sex ratio and offspring performance. We found no effect of nest depth on six parameters of incubation regime, nor on resultant offspring survival, size or sex ratio. However, deeper nests produced hatchlings that weighed less, and were faster at righting themselves and swimming, than hatchlings from shallower nests. We suggest that cues used by females in adjusting nest depth are unreliable as predictors of future incubation conditions, and the adjustment in nest depth required to affect sex ratio in this species may be too great to keep pace with climate change. Therefore, maternal adjustment of nest depth seems unlikely to compensate for climate change-induced sex ratio skews in small-bodied, freshwater turtles.
Stranded sea turtles provide valuable information about causes of mortality that threatens these imperiled species. Many potential factors determine whether drifting sea turtles are deposited on shore, discovered by people, and reported to stranding networks resulting in successful documentation. We deployed 182 sea turtle cadavers and 115 wooden effigy drifters with affixed GPS-satellite tags to study stranding probability in the northern Gulf of Mexico (nGOM) in an effort to better understand seasonal stranding variations in this region. Public reports of beached carcasses were recorded to determine reporting rates. Season and distance from shore greatly influenced beaching results. During winter months when strandings are infrequent and sea turtle abundance is likely low in cold nearshore waters, carcasses had an 80–90% probability of beaching. Beaching probability was reduced to 37–50% during the spring, which is the period of greatest strandings in this region. During summer months when relatively few strandings are documented, the probability of a carcass beaching dropped to only 4–8%. Low summer stranding rates were coincident with higher rates of decomposition (7%) attributed to warmer water temperatures, more frequent scavenging (69% of carcasses), and shifting wind and current patterns which drive carcasses offshore or to remote locations. As waters cooled in the fall, probability of carcasses beaching increased to 40–48%, coincident with a small pulse in strandings that often occurs during this period. Only 28% of carcasses and effigies came ashore on mainland beaches and were easily available for discovery by the public, 49% were on barrier islands that are publicly accessible and 23% beached in dense salt marshes where discovery would be unlikely. The 47% of objects that did not beach included those lost at sea and carcasses that were likely scavenged or decomposed. Only 22% of beached carcasses were reported due to infrequent (11%) reporting on barrier islands. Notably, only 50% of carcasses deposited on mainland beaches were reported, which was lower than anticipated. We recommend additional efforts to increase reporting rates of carcasses by the public and use of dedicated surveys to detect stranded sea turtles, especially on barrier islands in this region.
Abstract. The most recent climate change projections show a global increase in temperatures, along with major adjustments to precipitation, throughout the 21st century. Species exhibiting temperature-dependent sex determination are highly susceptible to such changes since the incubation environment influences critical offspring characteristics such as survival and sex ratio. Here we show that the mean incubation duration of loggerhead sea turtle (Caretta caretta) nests from a high-density nesting beach on Bald Head Island, North Carolina, USA has decreased significantly over the past 25 yr. This decrease in incubation duration is significantly positively correlated with mean air temperature and negatively correlated with mean precipitation during the nesting season. Additionally, although no change in hatching success was detected during this same period, a potentially detrimental consequence of shorter incubation durations is that they lead to the production of primarily female offspring. Given that global temperatures are predicted to increase by as much as 4°C over the next century, the mass feminization of sea turtle hatchlings is a high-priority concern. While presently limited in number, studies using long-term data sets to examine the temporal correlation between offspring characteristics and climatic trends are essential for understanding the scope and direction of climate change effects on species persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.