Although the formation of terminally differentiated erythroid cells has been shown to require the presence of a functional GATA-1 gene in vivo, the role of this transcription factor and other members of the GATA family at earlier stages of erythroid differentiation is unclear. In this report, the expression of GATA-1, GATA-2, and GATA-3 has been examined in enriched peripheral blood progenitors before and after culture in a well-characterized liquid culture system. In addition primary leukemic cells as well as several erythroleukemic and nonerythroid cell lines were analyzed for GATA factor expression. The results show that the profile of GATA factor expression in erythroid cells is distinct from that of myeloid or lymphoid lineages. Erythroleukemic cell lines express little or no GATA-3, but high levels of GATA-1 and GATA-2. When they are induced to display the terminal erythroid phenotype, little change in the level of GATA-1 is detected but a significant decline in the levels of GATA-2 is observed commensurate with the degree of maturation achieved by the cells. Enrichment of erythroid progenitors from peripheral blood leads to selection of cells that express both GATA-1 and GATA-2. As the enriched populations are cultured in suspension in the presence of multiple cytokines, the levels of both GATA-1 and GATA-2 initially increase. However, in cultures containing only erythropoietin, which show exclusive erythroid differentiation, the levels of GATA-1 continue to increase, whereas GATA-2 expression declines as erythroid maturation progresses. In contrast, cultures lacking Epo (ie, with interleukin-3 and kit ligand) display limited progression towards both the myeloid and erythroid pathways, and high levels of expression of both GATA-1 and GATA-2 are maintained. Despite the initial upregulation of GATA-1 expression in the latter cultures, terminal erythroid differentiation does not occur in the absence of erythropoietin. These results indicate that GATA-1 upregulation is associated with both the initiation and the maintenance of the erythroid program, but that these two processes appear to be under separate regulatory control. Thus, the dynamic changes in the levels of different GATA factors that occur during primary erythroid differentiation suggest that the levels of these factors may influence the progression to specific hematopoietic pathways.
To understand the functional roles that the GATA factors may play during hematopoietic cell differentiation, we examined the expression of GATA factor mRNAs and protein products in various human cell lines. Blot hybridization analyses demonstrated that GATA-1 and GATA-2 mRNAs are expressed abundantly in a set of cell lines established from human myelogenous leukemia cells, but the expression pattern of each factor is distinct. GATA-2 mRNA is expressed in all cell lines tested that express erythroid markers, and, in addition, the mRNA is also expressed in three CD34+ cell lines and two early myeloid cell lines. In contrast, the expression of GATA-1 mRNA showed tight correlation to that of the erythroid/megakaryocytic lineage markers. We also found that the GATA-2 probe identifies two types of mRNA. Structural analysis of genomic DNA clones encoding human GATA-2 coupled with RNA blot analysis demonstrated that there exists an alternative use of polyadenylation consensus sequences in a single exon and this causes the molecular heterogeneity among GATA-2 mRNAs. Through immunochemical and immunohistochemical analyses using anti-GATA-1- and anti-GATA-2- specific antibodies, GATA-2 protein was clearly shown to be present in the nuclei of leukemia-derived early myeloid and CD34+ cell lines, whereas both GATA-1 and GATA-2 proteins are expressed in erythroid/megakaryocytic cell lines. Thus, the expression profile of GATA-2 is consistent with the hypothesis that GATA-2 plays unique roles for the transcriptional activation of genes in cells at an early stage of hematopoietic differentiation and in developing cells of the erythroid and myeloid lineages.
In this paper, we show that the transcription factor GATA3 is dynamically expressed during hindbrain development. Function of GATA3 in ventral rhombomere (r) 4 is dependent on functional GATA2, which in turn is under the control of Hoxb1. In particular, the absence of Hoxb1 results in the loss of GATA2 expression in r4 and the absence of GATA2 results in the loss of GATA3 expression. The lack of GATA3 expression in r4 inhibits the projection of contralateral vestibuloacoustic efferent neurons and the migration of facial branchiomotor neurons similar to Hoxb1-deficient mice. Ubiquitous expression of Hoxb1 in the hindbrain induces ectopic expression of GATA2 and GATA3 in ventral r2 and r3. These findings demonstrate that GATA2 and GATA3 lie downstream of Hoxb1 and provide the first example of Hox pathway transcription factors within a defined population of vertebrate motor neurons.
To understand the functional roles that the GATA factors may play during hematopoietic cell differentiation, we examined the expression of GATA factor mRNAs and protein products in various human cell lines. Blot hybridization analyses demonstrated that GATA-1 and GATA-2 mRNAs are expressed abundantly in a set of cell lines established from human myelogenous leukemia cells, but the expression pattern of each factor is distinct. GATA-2 mRNA is expressed in all cell lines tested that express erythroid markers, and, in addition, the mRNA is also expressed in three CD34+ cell lines and two early myeloid cell lines. In contrast, the expression of GATA-1 mRNA showed tight correlation to that of the erythroid/megakaryocytic lineage markers. We also found that the GATA-2 probe identifies two types of mRNA. Structural analysis of genomic DNA clones encoding human GATA-2 coupled with RNA blot analysis demonstrated that there exists an alternative use of polyadenylation consensus sequences in a single exon and this causes the molecular heterogeneity among GATA-2 mRNAs. Through immunochemical and immunohistochemical analyses using anti-GATA-1- and anti-GATA-2- specific antibodies, GATA-2 protein was clearly shown to be present in the nuclei of leukemia-derived early myeloid and CD34+ cell lines, whereas both GATA-1 and GATA-2 proteins are expressed in erythroid/megakaryocytic cell lines. Thus, the expression profile of GATA-2 is consistent with the hypothesis that GATA-2 plays unique roles for the transcriptional activation of genes in cells at an early stage of hematopoietic differentiation and in developing cells of the erythroid and myeloid lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.