We examine the electroforming-dependent multifunctional resistive switching features by operating a merged Pt/Ta2O5−x/Ta–Ta/Ta2O5−x/Pt switching device under particular bias and polarity conditions.
Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes.
We describe abnormal dual bipolar resistive switching events in simple Pt/Ta 2 O 5Àx /TiO x N y and Pt/Ta 2 O 5Àx /TiN matrices in which the typical switching directions (SD) are initially clockwise (CW). The negative difference region in a high resistance state before reaching the typical "CW set" process enables the SD transition to a counterclockwise direction. It thereby emphasizes the occurrence of a highly stable secondary bipolar resistive switching curve. The origin of two different switching modes is described by adapting a bias-dependent oxygen ion accumulation and depletion process at TiO x N y and TiN electrode interfaces and by performing various structural analyses. V C 2013 AIP Publishing LLC. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.