The effects of the atomic hydrogen treatment (H-treatment) of indium-tin oxide (ITO) and aluminum-doped zinc oxide (AZO) films have been investigated. The atomic hydrogen was generated by hot-wire chemical vapor deposition (HW-CVD) technique. Experimental results have shown that AZO films are chemically very stable under the H-treatment; almost no variation in the optical transmittance and electrical resistivity was observed. On the contrary, ITO films, either prepared by sputtering with ex-situ or in-situ thermal-annealing, have shown severe optical and electrical degradation and surface whitening after the H-treatment. SEM studies of the H-treated ITO surfaces have revealed that the surface whitening was due to the increase in surface roughness and the formation of granule-like metallic balls. Auger electron spectroscopy has indicated that the balls were mainly composed of indium atoms and the areas between balls were rich in oxygen atoms. These results were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy measurements done on ITO before and after the H-treatment. Finally, we have demonstrated that a-SiO, deposited by PECVD will completely suppress the chemical reaction between ITO surfaces and atomic hydrogen generated by HW-CVD technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.