Physical attacks are a known threat posed against secure embedded systems. Notable among these is laser fault injection, which is often considered as the most effective fault injection technique. Indeed, laser fault injection provides a high spatial accuracy, which enables an attacker to induce bit-level faults. However, experience gained from attacking 8-bit targets might not be relevant on more advanced micro-architectures, and these attacks become increasingly challenging on 32-bit microcontrollers. In this article, we show that the flash memory area of a 32-bit microcontroller is sensitive to laser fault injection. These faults occur during the instruction fetch process, hence the stored value remains unaltered. After a thorough characterisation of the induced faults and the associated fault model, we provide detailed examples of bitlevel corruption of instructions and demonstrate practical applications in compromising the security of real-life codes. Based on these experimental results, we formulate a hypothesis about the underlying micro-architectural features that explain the observed fault model.
Microcontrollers storing valuable data or using security functions are vulnerable to fault injection attacks. Among the various types of faults, instruction skips induced at runtime proved to be effective against identification routines or encryption algorithms. Several research works assessed a fault model that consists in a single instruction skip, i.e. the ability to prevent one chosen instruction in a program from being executed. This assessment is used to design countermeasures able to withstand a single instruction skip. We question this fault model on experimental basis and report the possibility to induce with a laser an arbitrary number of instruction skips. This ability to erase entire sections of a firmware has strong implications regarding the design of countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.