Wood is one of our most important natural resources. Surprisingly, we know hardly anything about the details of the process of wood formation. The aim of this work was to describe the main proteins expressed in wood forming tissue of a conifer species (Pinus pinaster Ait.). Using high resolution 2-DE with linear pH gradient ranging from 4 to 7, a total of 1039 spots were detected. Out of the 240 spots analyzed by MS/MS, 67.9% were identified, 16.7% presented no homology in the databases, and 15.4% corresponded to protein mixtures. Out of the 57 spots analyzed by MALDI-MS, only 15.8% were identified. Most of the 175 identified proteins play a role in either defense (19.4%), carbohydrates (16.6%) and amino acid (14.9%) metabolisms, genes and proteins expression (13.1%), cytoskeleton (8%), cell wall biosynthesis (5.7%), secondary (5.1%) and primary (4%) metabolisms. A summary of the identified proteins, their putative functions, and behavior in different types of wood are presented. This information was introduced into the PROTICdb database and is accessible at http://cbib1.cbib.u-bordeaux2.fr/Protic/Protic/home/index.php. Finally, the average protein amount was compared with their respective transcript abundance as quantified through EST counting in a cDNA-library constructed with mRNA extracted from wood forming tissue.
When a conifer shoot is displaced from its vertical position, compression wood (CW) is formed on the under side and can eventually return the shoot to its original position. Changes in cell wall structure and chemistry associated with CW are likely to result from differential gene/protein expression. Two-dimensional polyacrylamide gel electrophoresis of differentiating xylem proteins was combined with the physical characterization of wooden samples to identify and characterize CW-responsive proteins. Differentiating xylem was harvested from a 22-year-old crooked maritime pine (Pinus pinaster Ait.) tree. Protein extracted from different samples were revealed by high-resolution silver stained two-dimensional polyacrylamide gel electrophoresis and analyzed with a computer-assisted system for single spot quantification. Growth strain (GS) measurements allowed xylem samples to be classified quantitatively from normal wood to CW. Regression of lignin and cellulose content on GS showed that an increase in the percentage of lignin and a decrease of the percentage of cellulose corresponded to increasing GS values, i.e. CW. Of the 137 studied spots, 19% were significantly associated with GS effect. Up-regulated proteins included 1-aminocyclopropane-1-carboxylate oxidase (an ethylene forming enzyme), a putative transcription factor, two lignification genes (caffeic O-methyltransferase and caffeoyl CoA-O-methyltransferase), members of the S-adenosyl-l-methionine-synthase gene family, and enzymes involved in nitrogen and carbon assimilation (glutamine synthetase and fructokinase). A clustered correlation analysis was performed to study simultaneously protein expression along a gradient of gravistimulated stressed xylem tissue. Proteins were found to form "expression clusters" that could identify: (a) Gene product under similar control mechanisms, (b) partner proteins, or (c) functional groups corresponding to specialized pathways. The possibility of obtaining regulatory correlations and anticorrelations between proteins provide us with a new category of homology (regulatory homology) in tracing functional relationships.
Wood formation is being increasingly studied at cellular and biochemical levels; however, gene expression and regulation during wood formation remain poorly understood. Up to six types of wood can be studied within the same tree (early wood, late wood, juvenile wood, mature wood, reaction wood and opposite wood). These six types are characterized by different chemical, physical and anatomical properties. Using the cDNA-amplified fragment length polymorphism (AFLP) technique, we screened several thousand cDNA fragments from differentiating xylem of maritime pine (Pinus pinaster Ait.) comparing early wood vs. late wood and compression wood vs. opposite wood after 8 or 120 days of bending. About 100 transcript-derived fragments (TDFs) showed qualitative or quantitative variations between these different samples. The relative abundance of these TDFs was subsequently analyzed by reverse Northern using RNA derived from early and late wood. Analysis of variance (ANOVA) was used to identify differentially expressed TDFs ( P<0.01) and reverse transcription-polymerase chain reaction to confirm the differential expression of some TDFs. Among the genes with a known function, transcript expression and nucleotide sequence variation analysis showed a cell wall glycine-rich protein to be a strong candidate gene for wood properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.