We consider the classical problem of the blowing-up of solutions of the nonlinear heat equation. We show that there exist infinitely many profiles around the blowup point, and for each integer k, we construct a set of codimension 2k in the space of initial data giving rise to solutions that blow-up according to the given profile.
We present a general method for studying long-time asymptotics of nonlinear parabolic partial differential equations. The method does not rely on a priori estimates such as the maximum principle. It applies to systems of coupled equations, to boundary conditions at infinity creating a front, and to higher (possibly fractional) differential linear terms. We present in detail the analysis for nonlinear diffusion-type equations with initial data falling off at infinity and also for data interpolating between two different stationary solutions at infinity. In an accompanying paper, [5], the method is applied to systems of equations where some variables are "slaved," such as the complex Ginzburg-Landau equation.
We show that the three-dimensional Ising model coupled to a small random magnetic field is ordered at low temperatures. This means that the lower critical dimension, d x for the theory is d x ^ 2, settling a long controversy on the subject. Our proof is based on an exact Renormalization Group (RG) analysis of the system. This analysis is carried out in the domain wall representation of the system and it is inspired by the scaling arguments of Imry and Ma. The RG acts in the space of Ising models and in the space of random field distributions, driving the former to zero temperature and the latter to zero variance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.