International audienceThe disambiguation of named entities is a challenge in many fields such as scientometrics, social networks, record linkage, citation analysis, semantic web...etc. The names ambiguities can arise from misspelling, typographical or OCR mistakes, abbreviations, omissions... Therefore, the search of names of persons or of organizations is difficult as soon as a single name might appear in many different forms. This paper proposes two approaches to disambiguate on the affiliations of authors of scientific papers in bibliographic databases: the first way considers that a training dataset is available, and uses a Naive Bayes model. The second way assumes that there is no learning resource, and uses a semi-supervised approach, mixing soft-clustering and Bayesian learning. The results are encouraging and the approach is already partially applied in a scientific survey department. However, our experiments also highlight that our approach has some limitations: it cannot process efficiently highly unbalanced data. Alternatives solutions are possible for future developments, particularly with the use of a recent clustering algorithm relying on feature maximization
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.