Phylogenetic and geographic proximities between humans and apes pose a risk of zoonotic transmission of pathogens. Bonobos (Pan paniscus) of the Bolobo Territory, Democratic Republic of the Congo, live in a fragmented forest-savanna mosaic setting, a marginal habitat for this species used to living in dense forests. Human activities in the forest have increased the risk of contacts between humans and bonobos. Over 21 months (September 2010-October 2013), we monitored intestinal parasites in bonobo (n = 273) and in human (n = 79) fecal samples to acquire data on bonobo parasitology and to assess the risk of intestinal helminth transmission between these hosts. Coproscopy, DNA amplification, and sequencing of stored dried feces and larvae were performed to identify helminths. Little difference was observed in intestinal parasites of bonobos in this dryer habitat compared to those living in dense forests. Although Strongylids, Enterobius sp., and Capillaria sp. were found in both humans and bonobos, the species were different between the hosts according to egg size or molecular data. Thus, no evidence of helminth transmission between humans and bonobos was found. However, because humans and this threatened species share the same habitat, it is essential to continue to monitor this risk.
Habituation is the term used to describe acceptance by wild animals of a human observer as a neutral element in their environment. Among primates, the process takes from a few days for Galago spp. to several years for African apes. There are also intraspecies differences reflecting differences in habitat, home range, and ape-human relationship history. Here, we present the first study of the process of bonobo habituation in a fragmented habitat, a forest-savanna mosaic in the community-based conservation area led by the Congolese nongovernmental organization Mbou-Mon-Tour, Democratic Republic of the Congo. In this area, local people use the forest almost every day for traditional activities but avoid bonobos because of a traditional taboo. Because very few flight reactions were observed during habituation, we focused on quantitative parameters to assess the development of ape tolerance and of the tracking efficiency of observer teams. During the 18-month study period (May 2012-October 2013), 4043 h (319 days) were spent in the forest and bonobos were observed for a total of 405 h (196 contacts on 134 days). The average contact duration was stable over time (124 min), but the minimal distance during a contact decreased with habituation effort. Moreover, bonobo location and tracking efficiency, daily ratio of contact time to habituation effort, and the number of observations at ground level were positively correlated with habituation effort. Our observations suggest that bonobos become habituated relatively rapidly. These results are discussed in relation to the habitat type, ape species, and the local sociocultural context of villagers. The habituation process involves changes in ape behavior toward observers and also more complex interactions concerning the ecosystem, including the building of an efficient local team. Before starting a habituation process, knowledge of the human sociocultural context is essential to assess the balance between risks and benefits.
Most primates are arboreal, and the current context of habitat fragmentation makes gap-and road-crossing behaviours more and more common. Great apes may try to avoid behaviours such as arboreal leaping because such behaviours are risky given their size. Here, we report impressive gap-crossing by wild bonobos, Pan paniscus, in the Democratic Republic of Congo, induced by human disturbance and habitat fragmentation. We quantify the basic mechanics of leaps and arboreal landing performance in 2 individuals. The bonobos climbed a tree, 15 m high, and performed pronograde leaps between thin flexible branches, to grasp landing branches approximately 4 m further and below their starting point. They reached an instantaneous velocity of about 9 m.s-1. The bonobos used pendular swinging of landing branches to dissipate the kinetic energy built up during falling, requiring a grip force of about 2.5x body weight. Moreover, our results show that bonobos might be able to modulate the drag experienced during falling (up to 20% of body weight) by adjusting their posture. Apparently, bonobos evaluate the structural context to perform the best possible leap and balance the risks against the extra energetic costs involved. Further study of locomotor performance is needed to inform conservation planning, due to the extent of habitat fragmentation due to human activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.