In Drosophila, SCALLOPED (SD) belongs to a family of evolutionarily conserved proteins characterized by the presence of a TEA/ATTS DNA-binding domain [1, 2]. SD physically interacts with the product of the vestigial (vg) gene, where the dimer functions as a master gene controlling wing formation [3, 4]. The VG-SD dimer activates the transcription of several specific wing genes, including sd and vg themselves [5, 6]. The dimer drives cell-cycle progression by inducing expression of the dE2F1 transcription factor [7], which regulates genes involved in DNA replication and cell-cycle progression. Recently, YORKIE (YKI) was identified as a transcriptional coactivator that is the downstream effector of the Hippo signaling pathway, which controls cell proliferation and apoptosis in Drosophila[8]. We identified SD as a partner for YKI. We show that interaction between YKI and SD increases SD transcriptional activity both ex vivo in Drosophila S2 cells and in vivo in Drosophila wing discs and promotes YKI nuclear localization. We also show that YKI overexpression induces vg and dE2F1 expression and that proliferation induced by YKI or by a dominant-negative form of FAT in wing disc is significantly reduced in a sd hypomorphic mutant context. Contrary to YKI, SD is not required in all imaginal tissues. This indicates that YKI-SD interaction acts in a tissue-specific fashion and that other YKI partners must exist.
To gain new insight into the role of B-cell autophagy, we generated two novel mouse models deficient for the autophagy-related gene (Atg)5, one from the outset pro-B cell stage (Atg5 f/ − Mb1 cre) and the other in mature B cells only (Atg5 f/ − CD21 cre). We show that autophagy is dispensable for pro-to pre-B cell transition, but necessary at a basal level to maintain normal numbers of peripheral B cells. It appears non-essential for B-cell activation under B-cell receptor stimulation but required for their survival after lipopolysaccharide stimulation that drives plasmablast differentiation and for specific IgM production after immunization. Results obtained using Atg5 f/ − CD21 cre × C57BL/6 lpr/lpr autoimmune-prone mice show that B-cell autophagy is involved in the maintenance of anti-nuclear antibody secretion, elevated number of long-lived plasma cells, and sustains IgG deposits in the kidneys. Thus, treatments specifically targeting autophagy might be beneficial in systemic autoimmune diseases. Cell Death and Differentiation (2016) 23, 853-864; doi:10.1038/cdd.2015 published online 20 November 2015 Macroautophagy is a catabolic process allowing the degradation of cytoplasmic material in double membrane vesicles, ultimately fusing with lysosomes. Macroautophagy, initially implicated in the generation of nutrients under metabolic stress, is known to have multiple roles, in different physiologic compartments, such as in vacuole trafficking, cell signalling, and cell death. Macroautophagy is deeply involved in the regulation of immunity.1 It has been shown that autophagy can regulate inflammation related to inflammasome activation and to type I interferon secretion. Moreover, it contributes to antigen presentation by both major histocompatibility complex (MHC) class I and class II molecules. 2Macroautophagy is also tightly linked to lymphocyte activation and survival. It has central roles in T-cell basal homeostasis, survival, and polarization.3 It is also involved in the regulation of T-cell signalling by downregulating the NF-κB pathway 4 and apoptosis processes through the procaspases 3 and 8 degradation. 5 Macroautophagy has additionally been described to regulate B-cell lineage, in particular during B-cell development. Thus, it has been shown that B cells generated from fetal liver chimaeras, with a complete deletion of the essential autophagy-related gene (Atg)5, exhibited a block at the proto pre-B stage transition.6,7 However, as the genetic deletion is systemic and occurs very early during development, the question remains over whether the developmental blockade could be due to defects resulting from early haematopoietic development. Indeed, macroautophagy has been shown to be fundamental to haematopoietic stem cell survival and renewal.8 Moreover, conditional deletion of Atg5 under the control of CD19 promoter expressed from the pre-B stage does not lead to major developmental breaks, except a decrease in B-1a B-cell population. 6 The contrast with results obtained with chimaeric mice could be due...
Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.