Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.
Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally. Experimental observationsExperimental studies have shown that SG assemble in response to multiple types of stress situations [21,22,23], and several pathways for SG formation have been identified. The most established is the ATP-dependent phosphorylation of the translation initiation factor eIF2α causing the arrest of RNA translation [16]. RNA is subsequently released from polysomes and aggregate with various proteins to form SG. There exist also other pathways that are independent of eIF2α phosphorylation [24], such as energy starvation [23]. Indeed, while various stress conditions causing SG assembly also cause a depletion of the cytoplasmic energy stores [21,25,26],
Phase transitions, such as the freezing of water and the magnetisation of a ferromagnet upon lowering the ambient temperature, are familiar physical phenomena. Interestingly, such a collective change of behaviour at a phase transition is also of importance to living systems. From cytoplasmic organisation inside a cell to the collective migration of cell tissue during organismal development and wound healing, phase transitions have emerged as key mechanisms underlying many crucial biological processes. However, a living system is fundamentally different from a thermal system, with driven chemical reactions (e.g., metabolism) and motility being two hallmarks of its nonequilibrium nature. In this review, we will discuss how driven chemical reactions can arrest universal coarsening kinetics expected from thermal phase separation, and how motility leads to the emergence of a novel universality class when the rotational symmetry is spontaneously broken in an incompressible fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.