A formal Bayesian analysis of a mixture model usually leads to intractable calculations, since the posterior distribution takes into account all the partitions of the sample. We present approximation methods which evaluate the posterior distribution and Bayes estimators by Gibbs sampling, relying on the missing data structure of the mixture model. The data augmentation method is shown to converge geometrically, since a duality principle transfers properties from the discrete missing data chain to the parameters. The fully conditional Gibbs alternative is shown to be ergodic and geometric convergence is established in the normal case. We also consider non-informative approximations associated with improper priors, assuming that the sample corresponds exactly to a k-component mixture.
Spike-sorting techniques attempt to classify a series of noisy electrical waveforms according to the identity of the neurons that generated them. Existing techniques perform this classification ignoring several properties of actual neurons that can ultimately improve classification performance. In this study, we propose a more realistic spike train generation model. It incorporates both a description of "nontrivial" (i.e., non-Poisson) neuronal discharge statistics and a description of spike waveform dynamics (e.g., the events amplitude decays for short interspike intervals). We show that this spike train generation model is analogous to a one-dimensional Potts spin-glass model. We can therefore tailor to our particular case the computational methods that have been developed in fields where Potts models are extensively used, including statistical physics and image restoration. These methods are based on the construction of a Markov chain in the space of model parameters and spike train configurations, where a configuration is defined by specifying a neuron of origin for each spike. This Markov chain is built such that its unique stationary density is the posterior density of model parameters and configurations given the observed data. A Monte Carlo simulation of the Markov chain is then used to estimate the posterior density. We illustrate the way to build the transition matrix of the Markov chain with a simple, but realistic, model for data generation. We use simulated data to illustrate the performance of the method and to show that this approach can easily cope with neurons firing doublets of spikes and/or generating spikes with highly dynamic waveforms. The method cannot automatically find the "correct" number of neurons in the data. User input is required for this important problem and we illustrate how this can be done. We finally discuss further developments of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.