International audienceThread mapping is an appealing approach to efficiently exploit the potential of modern chip-multiprocessors. However, efficient thread mapping relies upon matching the behavior of an application with system characteristics. In particular, Software Transactional Memory (STM) introduces another dimension due to its runtime system support. In this work, we propose a dynamic thread mapping approach to automatically infer a suitable thread mapping strategy for transactional memory applications composed of multiple execution phases with potentially different transactional behavior in each phase. At runtime, it profiles the application at specific periods and consults a decision tree generated by a Machine Learning algorithm to decide if the current thread mapping strategy should be switched to a more adequate one. We implemented this approach in a state-of-the-art STM system, making it transparent to the user. Our results show that the proposed dynamic approach presents performance improvements up to 31% compared to the best static solution
Abstract. This paper deals with non-orthogonal joint block diagonalization. Two algorithms which minimize the Kullback-Leibler divergence between a set of real positive-definite matrices and a block-diagonal transformation thereof are suggested. One algorithm is based on the relative gradient, and the other is based on a quasi-Newton method. These algorithms allow for the optimal, in the mean square error sense, blind separation of multidimensional Gaussian components. Simulations demonstrate the convergence properties of the suggested algorithms, as well as the dependence of the criterion on some of the model parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.