A quadrilateral element with smoothed curvatures for Mindlin-Reissner plates is proposed. The curvature at each point is obtained by a non-local approximation via a smoothing function. The bending stiffness matrix is calculated by a boundary integral along the boundaries of the smoothing elements (smoothing cells). Numerical results show that the proposed element is robust, computational inexpensive and simultaneously very accurate and free of locking, even for very thin plates. The most promising feature of our elements is their insentivity to mesh distortion.
SUMMARYThis study presents a general procedure of creating pure equilibrium tetrahedral finite elements for use under the elastostatic hypothesis. These pure equilibrium elements are of the Fraeijs de Veubeke type and the degree of the polynomial approximation functions of their internal stress field is the parameter generating this new elements family. The spurious kinematic modes (SKM), inherent in the equilibrium approach, are eliminated at the element level by converting each tetrahedron into a super-element defined as an assembly of four tetrahedral primitive elements. A mathematical discussion on the number of SKM of the primitive elements as well as their elimination by the super-element technique has been carried out. The development of first and second degree elements is presented here in detail and their efficiency in the frame of global error estimation by dual analysis is emphasized by two numerical applications. The main attribute of the error estimation by dual analysis is that it provides an upper bound on the global discretization error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.