NOMAD is a spectrometer suite on board ESA's ExoMars trace gas orbiter due for launch in January 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at dayside and nightside, and during solar occultations. In this paper, the design, manufacturing, and testing of the two infrared channels are described. We focus upon the optical working principle in these channels, where an echelle grating, used as a diffractive element, is combined with an acousto-optical tunable filter, used as a diffraction order sorter.
Abstract. A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a "pancake" coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 µV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s.
The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA) allows MIRIM to perform low-resolution spectroscopy. The MIRIM DPA shall meet a number of challenging requirements in terms of optical and mechanical constraints, especially severe optical tolerances, limited envelope and very high vibration loads.The University of Cologne (Germany) and the Centre Spatial de Liege (Belgium) are responsible for design, manufacturing, integration, and testing of the prism assembly. A companion paper (Fischer et al. 2008) is presenting the science drivers and mechanical design of the DPA, while this paper is focusing on optical manufacturing and overall verification processes.The first part of this paper describes the manufacturing of Zinc-sulphide and Germanium prisms and techniques to ensure an accurate positioning of the prisms in their holder. (1) The delicate manufacturing of Ge and ZnS materials and (2) the severe specifications on the bearing and optical surfaces flatness and the tolerance on the prism optical angles make this process innovating. The specifications verification is carried out using mechanical and optical measurements; the implemented techniques are described in this paper.The second part concerns the qualification program of the double-prism assembly, including the prisms, the holder and the prisms anti-reflective coatings qualification. Both predictions and actual test results are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.