Landscape-level studies such as those on forest management planning and carbon accounting rely on large-area growth projections provided by forest growth models. Nowadays, most of these models are individual tree-based models. The detailed input they require and their complexity are a challenge for the integration into a landscape-level study. A possible alternative consists of approximating the complex model through a meta-model. A meta-model mimics the behaviour of the original model, while being simpler in terms of input and computation.
In this study, we developed a Bayesian meta-modelling approach that can be used to obtain a simplified growth model from an individual tree-based model. The approach was exemplified through a real-world case study, namely a forest management unit in the province of Quebec, Canada. Using a Markov chain Monte Carlo method, we managed to fit meta-models based on the Chapman-Richards equation or its derivative for the main potential vegetation types. This meta-modelling approach has the advantages of (i) being an effective method of upscaling, (ii) providing simple meta-models suitable for landscape-level studies and (iii) ensuring a proper error propagation from the original individual tree-based model into the meta-model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.