The closure of a regular language under a [partial] commutation I has been extensively studied. We present new advances on two problems of this area: (1) When is the closure of a regular language under [partial] commutation still regular? (2) Are there any robust classes of languages closed under [partial] commutation? We show that the class Pol(G) of polynomials of group languages is closed under commutation, and under partial commutation when the complement of I in A 2 is a transitive relation. We also give a sufficient graph theoretic condition on I to ensure that the closure of a language of Pol(G) under I-commutation is regular. We exhibit a very robust class of languages W which is closed under commutation. This class contains Pol(G), is decidable and can be defined as the largest positive variety of languages not containing (ab) * . It is also closed under intersection, union, shuffle, concatenation, quotients, lengthdecreasing morphisms and inverses of morphisms. If I is transitive, we show that the closure of a language of W under I-commutation is regular. The proofs are nontrivial and combine several advanced techniques, including combinatorial Ramsey type arguments, algebraic properties of the syntactic monoid, finiteness conditions on semigroups and properties of insertion systems.The closure of a regular language under commutation or partial commutation has been extensively studied [37,25, 1,17,18,19], notably in connection with regular model checking [2, 3,9,10] or in the study of Mazurkiewicz traces, one of the models of parallelism [20,21,26,27,28,29,38]. We refer the reader to the book [16] and to the survey [15] for further references.In this paper, we present new advances on two problems of this area. The first problem is well-known and has a very precise statement. The second problem is more elusive, since it relies on the somewhat imprecise notion of robust class. By a robust class, we mean a class of regular languages closed under some of the usual operations on languages, such as Boolean operations, product, star, shuffle, morphisms, inverses of morphisms, quotients, etc. For instance, regular languages form a very robust class, commutative languages (languages whose syntactic monoid is commutative) also form a robust class. Finally, group languages (languages whose syntactic monoid is a finite group) form a semi-robust
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.