In the domain of computer vision, object recognition aims at detecting and classifying objects in data sets. Model-driven approaches are typically constrained through their focus on either a specific type of data, a context (indoor, outdoor) or a set of objects. Machine learning-based approaches are more flexible but also constrained as they need annotated data sets to train the learning process. That leads to problems when this data is not available through the specialty of the application field, like archaeology, for example. In order to overcome such constraints, we present a fully semantic-guided approach. The role of semantics is to express all relevant knowledge of the representation of the objects inside the data sets and of the algorithms which address this representation. In addition, the approach contains a learning stage since it adapts the processing according to the diversity of the objects and data characteristics. The semantic is expressed via an ontological model and uses standard web technology like SPARQL queries, providing great flexibility. The ontological model describes the object, the data and the algorithms. It allows the selection and execution of algorithms adapted to the data and objects dynamically. Similarly, processing results are dynamically classified and allow for enriching the ontological model using SPARQL construct queries. The semantic formulated through SPARQL also acts as a bridge between the knowledge contained within the ontological model and the processing branch, which executes algorithms. It provides the capability to adapt the sequence of algorithms to an individual state of the processing chain and makes the solution robust and flexible. The comparison of this approach with others on the same use case shows the efficiency and improvement this approach brings.
Abstract. Automation in point cloud data processing is central for efficient knowledge discovery. In this paper, we propose an instance segmentation framework for indoor buildings datasets. The process is built on an unsupervised segmentation followed by an ontology-based classification reinforced by self-learning. We use both shape-based features that only leverages the raw X, Y, Z attributes as well as relationship and topology between voxel entities to obtain a 3D structural connectivity feature describing the point cloud. These are then used through a planar-based unsupervised segmentation to create relevant clusters constituting the input of the ontology of classification. Guided by semantic descriptions, the object characteristics are modelled in an ontology through OWL2 and SPARQL to permit structural elements classification in an interoperable fashion. The process benefits from a self-learning procedure that improves the object description iteratively in a fully autonomous fashion. Finally, we benchmark the approach against several deep-learning methods on the S3DIS dataset. We highlight full automation, good performances, easy-integration and a precision of 99.99% for planar-dominant classes outperforming state-of-the-art deep learning.
Through the power of new sensing technologies, we are increasingly digitizing the real world. However, instruments produce unstructured data, mainly in the form of point clouds for 3D data and images for 2D data. Nevertheless, many applications (such as navigation, survey, infrastructure analysis) need structured data containing objects and their geometry. Various computer vision approaches have thus been developed to structure the data and identify objects therein. They can be separated into model-driven, data-driven, and knowledge-based approaches. Model-driven approaches mainly use the information on the objects contained in the data and are thus limited to objects and context. Among data-driven approaches, we increasingly find deep learning strategies because of their autonomy in detecting objects. They identify reliable patterns in the data and connect these to the object of interest. Deep learning approaches have to learn these patterns in a training stage. Knowledge-based approaches use characteristic knowledge from different domains allowing the detection and classification of objects. The knowledge must be formalized and substitutes the training for deep learning. Semantic web technologies allow the management of such human knowledge. Deep learning and knowledge-based approaches have already shown good results for semantic segmentation in various examples. The common goal but the different strategies of the two approaches engaged our interest in doing a comparison to get an idea of their strengths and weaknesses. To fill this knowledge gap, we applied two implementations of such approaches to a mobile mapping point cloud. The detected object categories are car, bush, tree, ground, streetlight and building. The deep learning approach uses a convolutional neural network, whereas the knowledge-based approach uses standard semantic web technologies such as SPARQL and OWL2to guide the data processing and the subsequent classification as well. The LiDAR point cloud used was acquired by a mobile mapping system in an urban environment and presents various complex scenes, allowing us to show the advantages and disadvantages of these two types of approaches. The deep learning and knowledge-based approaches produce a semantic segmentation with an average F1 score of 0.66 and 0.78, respectively. Further details are given by analyzing individual object categories allowing us to characterize specific properties of both types of approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.