We demonstrate a hybrid accelerometer that benefits from the advantages of
both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and
long term stability. First, the use of a real time correction of the atom
interferometer phase by the signal from the classical accelerometer enables to
run it at best performances without any isolation platform. Second, a
servo-lock of the DC component of the conventional sensor output signal by the
atomic one realizes a hybrid sensor. This method paves the way for applications
in geophysics and in inertial navigation as it overcomes the main limitation of
atomic accelerometers, namely the dead times between consecutive measurements
Developments in atom interferometry have led to atomic inertial sensors with extremely high sensitivity. Their performances are for the moment limited by the ground vibrations, the impact of which is exacerbated by the sequential operation, resulting in aliasing and dead time. We discuss several experiments performed at LNE-SYRTE in order to reduce these problems and achieve the intrinsic limit of atomic inertial sensors. These techniques have resulted in transportable and high-performance instruments that participate in gravity measurements, and pave the way to applications in inertial navigation. arXiv:1601.06082v1 [physics.atom-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.