A study was conducted to investigate the involvement of bacteria in oyster mortalities during summer. Moribund and apparently healthy oysters were sampled during mortality events along the French coast and in rearing facilities, usually when temperature reached 19 degrees C or higher, and oysters were in the gonadal maturation phase. Hemolymph samples were aseptically withdrawn and submitted to bacteriological analysis. In healthy oysters, bacteria colonized hemolymph at low concentrations depending on the location. In most moribund oysters, bacteria were present in hemolymph and other tissues. These bacterial populations were more often diverse in oysters originating from the open sea than from facilities where animals were generally infected by a single type of bacterium. Only the dominant colonies were identified by phenotypic and genotypic characters (RFLP of GyrB gene and partial sequence of 16S rRNA gene). They belonged to a limited number of species including Vibrio aestuarianus, members of the V. splendidus group, V. natriegens, V. parahaemolyticus, and Pseudoalteromonas sp. The most frequently encountered species was V. aestuarianus (56% of isolates), which was composed of several strains closely related by their 16S rRNA gene but diverse by their phenotypic characters. They appeared intimately linked to oysters. The species within the V. splendidus group were less prevalent (25% of isolates) and more taxonomically dispersed. A majority of the dominant strains of V. aestuarianus and V. splendidus group injected to oysters induced mortality, whereas others belonging to the same species, particularly those found in mixture, appeared innocuous.
Four bacterial strains were isolated from larval cultures and collectors of the scallop Pecten maximus. They showed a high level of intragroup genomic relatedness (84-95 Yo) as determined by DNA-DNA hybridization. The cells were Gram-negative, strictly aerobic, motile, ovoid rods. They grew at temperatures from 15 to 37 "C and from pH 7.0 to 10, but did not grow in the absence of NaCl and required growth factors. They had the ability to use a wide variety of compounds as sole carbon source : D-mannose, D-galactose, D-f ructose, Dglucose, D-xylose, melibiose, trehalose, maltose, cellobiose, sucrose, mesoerythritol, D-mannitol, glycerol, D-sorbitol, meso-inositol, succinate, propionate, butyrate, y-aminobutyrate, DL-hydroxybutyrate, 2-ketoglutarate, pyruva te, f uma ra te, g I y c i ne, L-&-a Ian ine, &a I an ine, L-g I u tama te, L-arg in i ne, Llysine, L-ornithine and L-proline. They exhibited oxidase and catalase activities but no denitrif ication activity. The isolates did not contain bacteriochlorophyll a. The G+C content ranged from 57.6 to 58 molo/o. Phylogenetic analyses of the 16s rRNA sequence revealed that these isolates belong to the genus Roseobacter. On the basis of quantitative hybridization data, it is proposed that these isolates should be placed in a new species, Roseobacter gallaeciensis. The type strain is Roseobacter gallaeciensis BS1 07T (= CIP 1052103.
International audienceSummer mortality of Pacific oysters is known in several countries. However no specific pathogen has been systematically associated with this phenomenon. A complex combination of environmental and biological parameters has been suggested as the cause and is now starting to be identified. A high genetic basis was found for survival in oysters when a first generation (G1) was tested in three sites during summer. This paper presents a synthesis on physiological characteristics of two selected groups (‘R' and ‘S', from families selected for resistance and susceptibility to summer mortality respectively), of the second and third generations. R and S showed improvement or reduction of survival compared with the control in both field and laboratory trials confirming the high heritability of survival of juveniles <1 year old. Interestingly, no correlation was observed between growth and survival. Comparison between the two selected groups showed that S oysters invested more energy in reproduction and stayed a longer time without spawning than R oysters which had high synchronous spawning. This was mainly shown with high rather than low dietary rations (respectively 12% and 4% DW algae/DW oyster) in a controlled experiment. Moreover, early partial spawning was detected in S oysters and not R ones in the high dietary ration. S showed a higher respiration rate and an earlier decrease in absorption efficiency than R during gametogenesis, but they were not significantly different in glycogen or ATP utilisation. Two months before a mortality episode, hemocytes from S oysters had a higher adhesive capacity than R hemocytes and significantly higher reactive oxygen species production capacity. One month before mortality, S oysters had the highest hyalinocyte concentration and their expression of genes coding for glucose metabolism enzymes (Hexokinase, GS, PGM, PEPCK) was significantly lower in the labial palps. After a thermal increase from 13 °C to 19 °C, during 8 days in normoxia, S oysters showed a large HSP70 increase under hypoxia contrary to R oysters, suggesting their high susceptibility to stress. Their catalase activity was lower than in R oysters and showed no further change to subsequent hypoxia and pesticide stresses, in contrast to R oysters. These observations suggest possible links between higher reproductive effort in S oysters, their specific stress response to temperature and hypoxia, ROS production, partial spawning, hyalinocyte increase and the infection process. To compare R and S oysters in a more integrated way, a suppression subtractive hybridisation (SSH) library and a micro-array strategy are being undertaken
The strategies used by bacterial pathogens to circumvent host defense mechanisms remain largely undefined in bivalve molluscs. In this study, we investigated experimentally the interactions between the Pacific oyster (Crassostrea gigas) immune system and Vibrio aestuarianus strain 01/32, a pathogenic bacterium originally isolated from moribund oysters. First, an antibiotic-resistant V. aestuarianus strain was used to demonstrate that only a limited number of bacterial cells was detected in the host circulatory system, suggesting that the bacteria may localize in some organs. Second, we examined the host defense responses to V. aestuarianus at the cellular and molecular levels, using flow-cytometry and real-time PCR techniques. We showed that hemocyte phagocytosis and adhesive capabilities were affected during the course of infection. Our results also uncovered a previously-undescribed mechanism used by a Vibrio in the initial stages of host interaction: deregulation of the hemocyte oxidative metabolism by enhancing the production of reactive oxygen species and down-regulating superoxide dismutase (Cg-EcSOD) gene expression. This deregulation may provide an opportunity to the pathogen by impairing hemocyte functions and survival. These findings provide new insights into the cellular and molecular bases of the host-pathogen interactions in C. gigas oyster.
Vibrio aestuarianus strain 01/32 was previously shown to be pathogenic to Crassostrea gigas juveniles. To investigate virulence mechanisms of this pathogen, we studied the toxicity to oysters of its extracellular products (ECPs). ECPs displayed lethality to animals, with a LD(50) value of 3.3 microg/g body weight. To determine the oyster cellular immune responses induced by these ECPs, we further examined in vitro their effects on C. gigas hemocytes, using flow cytometric-based hemocyte assays. Treatment of hemolymph with ECPs caused a significant inhibition of hemocyte phagocytosis and adhesive capabilities. In contrast, the pathway of reactive oxygen species production was enhanced by higher ECP concentrations. Exposure of hemocytes to live bacteria induced no changes in hemocyte parameters. Together, these results suggest that V. aestuarianus strain 01/32 secretes one or more factors which may play an important role in the pathogenicity of this microorganism, and which display immunosuppressant activities on hemocyte functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.