Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12-35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality.
Tomato, an essential crop in terms of economic importance and nutritional quality, is also used as a model species for all fleshy fruits and for genomics of Solanaceae. Tomato fruit quality at harvest is a direct function of its metabolite content, which in turn is a result of many physiological changes during fruit development. The aim of the work reported here was to develop a global approach to characterize changes in metabolic profiles in two interdependent tissues from the same tomato fruits. Absolute quantification data of compounds in flesh and seeds from 8 days to 45 days post anthesis (DPA) were obtained through untargeted (proton nuclear magnetic resonance, 1 H-NMR) and targeted metabolic profiling (liquid chromatography with diode array detection (LC-DAD) or gas chromatography with flame ionization detection (GC-FID)). These data were analyzed with chemometric approaches. Kohonen self organizing maps (SOM) analysis of these data allowed us to combine multivariate (distribution of samples on Kohonen SOMs) and univariate information (component plane representation of metabolites) in a single analysis. This strategy confirmed published data and brought new insights on tomato flesh and seed composition, thus demonstrating its potential in metabolomics. The compositional changes were related to physiological processes occurring in each tissue. They pointed to (i) some parallel changes at early stages in relation to cell division and transitory storage of carbon, (ii) metabolites participating in the fleshy trait and (iii) metabolites involved in the specific developmental patterns of the seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.