beta-Lactoglobulin (beta-LG) is one of the cow's major milk proteins and the most abundant whey protein. This globular protein of about 18 kDa is folded, forming a beta-barrel (or calyx) structure. This structure is stabilized by two disulfide bonds and can be altered by heating above 65 degrees C. beta-LG is also one of the major allergens in milk. Heating is one of the most common technologic treatments applied during many milk transformations. During heating in the presence of reducing sugars, beta-LG is also submitted to the Maillard reaction, which at the first stage consists of the covalent fixation of sugars on the epsilon-amino groups of lysyl residues. The following steps are condensation and polymerization reactions leading to the formation of melanoidins (brown pigments). Despite the frequency of use of heating during milk transformation, the effects of heat-induced denaturation and of glycation of beta-LG on its recognition by IgE from cow's milk allergy (CMA) patients are not fully understood. The objectives of our work were to evaluate the effect of heat-induced denaturation of bovine beta-LG on binding of IgE from CMA patients and to determine the effect of moderate glycation on the degree of recognition by IgE. We showed that heat-induced denaturation (loss of tertiary and secondary structures) of beta-LG is associated with weaker binding of IgE from CMA patients. It was also shown that moderate glycation of beta-LG in early stages of Maillard reaction has only a small effect on its recognition by IgE, whereas a high degree of glycation has a clear "masking" effect on the recognition of epitopes. This demonstrates the importance of epsilon-amino groups of lysines in the definition of epitopes recognized by IgE.
Aims: The aim of this study was to isolate and identify bacteriocin-producing lactic acid bacteria (LAB) issued from Mongolian airag (traditional fermented mare's milk), and to purify and characterize bacteriocins produced by these LAB. Methods and Results: Identification of the bacteria (Enterococcus durans) was carried out on the basis of its morphological, biochemical characteristics and carbohydrate fermentation profile and by API50CH kit and 16S rDNA analyses. The pH-neutral cell-free supernatant of this bacterium inhibited the growth of several Lactobacillus spp. and food-borne pathogens including Escherichia coli, Staphylococcus aureus and Listeria innocua. The antimicrobial agent (enterocin A5-11) was heat stable and was not sensitive to acid and alkaline conditions (pH 2-10), but was sensitive to several proteolytic enzymes. Its inhibitory activity was completely eliminated after treatment with proteinase K and a-chymotrypsin. The activity was however not completely inactivated by other proteases including trypsin and pepsin. Three-step purification procedure with high recovery yields was developed to separate two bacteriocins. The applied procedure allowed the recovery of 16% and 64% of enterocins A5-11A and A5-11B, respectively, present in the culture supernatant with purity higher than 99%. SDS-PAGE analyses revealed that enterocin A5-11 has a molecular mass of 5000 Da and mass spectrometry analyses demonstrates molecular masses of 5206 and 5218 Da for fractions A and B, respectively. Amino acid analyses of both enterocins indicated significant quantitative difference in their contents in threonine, alanine, isoleucine and leucine. Their N-termini were blocked hampering straightforward Edman degradation. Conclusions: Bacteriocins A5-11A and B from Ent. durans belong to the class II of bacteriocins. Significance and Impact of the Study: Judging from molecular masses, amino acid composition and spectrum of activities, bacteriocins A5-11A and B from Ent. durans show high degree of similarity with enterocins L50A and L50B isolated from Enterococcus faecium (Cintas et al. 1998(Cintas et al. , 2000 and with enterocin I produced by Ent. faecium 6T1a, a strain originally isolated from a Spanish-style green olive fermentation (Floriano et al. 1998).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.