Detailed studies of wheat glutenin subunits have provided novel details of their molecular structures and interactions which allow the development of a model to explain their role in determining the visco-elastic properties of gluten and dough. The construction and analysis of near-isogenic and transgenic lines expressing novel subunit combinations or increased amounts of specific subunits allows differences in gluten properties to be related to the structures and properties of individual subunits, with potential benefits for the production of cultivars with improved properties for food processing or novel end users #
B epitopes in wheat allergy were different from B epitopes of coeliac disease. Differences exist in IgE-binding epitopes between patients with food allergy to wheat. IgE from those suffering from WDEIA, anaphylaxis and urticaria detected sequential epitopes in the repetitive domain of gliadins whereas IgE from AEDS patients probably recognized conformational epitopes.
Cereal Chem. 77(2):121-127 A transglutaminase from Streptoverticillium sp. was used to create new covalent intermolecular cross-links between proteins in gluten. This modification induced drastic changes in its physicochemical properties as well as in its rheological behavior. To understand these changes, we characterized the gluten extractability in acetic acid and identified the proteins of supernatant and pellet by immunoblotting using antibodies specific for each prolamin class. The proportion of soluble proteins decreased drastically after transglutaminase treatment due to the formation of large insoluble polymers as shown by SDS-PAGE. Among the constitutive proteins of gluten, the high molecular weight glutenin subunits were the most affected in the transglutaminase reaction. The rheological behavior of gluten after 18 hr of incubation with transglutaminase was studied in shear by dynamic measurements over 10 -3 -10 1 Hz frequency range and by creep and recovery tests. The behavior of treated glutens remained that of a transient network, but the viscoelastic response was shifted toward shorter times and the steady-state viscosity was greatly increased. The enzymatic treatment caused a considerable reinforcement of the network. The modified glutens were also less sensitive to thermal processing than unmodified glutens, as shown by a lower amplitude of variation of storage modulus G′ with temperature after enzymatic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.