The medial division of the medial geniculate body (MGm) projects to the lateral amygdala and the upper layer of auditory cortex and develops physiological plasticity rapidly during classical conditioning. The effects of learning on frequency receptive fields (RFs) in the MGm of the guinea pig have been determined. Classical conditioning (tone-footshock), as indexed by rapid development of conditioned bradycardia, produced conditioned stimulus (CS)-frequency specific RF plasticity: increased response at the CS frequency with decreased responses at other frequencies, both immediately and after a 1-hr retention period. Sensitization training produced only general changes in RFs. These findings are considered with reference to both the elicitation of amygdala-mediated, fear-conditioned responses and the mechanism of retrieval of information stored in the auditory cortex during acquisition.
Classical conditioning induces frequency-specific receptive field (RF) plasticity in the auditory cortex after relatively brief training (30 trials), characterized by increased response to the frequency of the conditioned stimulus (CS) and decreased responses to other frequencies, including the pretraining best frequency (BF). This experiment determined the development of this CS-specific RF plasticity. Guinea pigs underwent classical conditioning to a tonal frequency, and receptive fields of neurons in the auditory cortex were determined before and after 5, 15, and 30 CS-US (unconditioned stimulus) pairings, as well as 1 hr posttraining. Highly selective RF changes were observed as early as the first 5 training trials. They culminated after 15 trials, then stabilized after 30 trials and 1 hr posttraining. The rapid development of RF plasticity satisfies a criterion for its involvement in the neural bases of a specific associative memory.
Classical conditioning is known to induce frequency-specific receptive field (RF) plasticity in the auditory cortex (ACx). This study determined the effects of discrimination training on RFs at two levels of task difficulty. Single unit and cluster discharges were recorded in the ACx of adult guinea pigs trained in a tone-shock frequency discrimination paradigm (30 intermixed trials each of positive conditioned stimulus [CS+]-shock and negative CS [CS-] alone) with behavioral performance indexed by the cardiac deceleration conditioned response (CR). After training in an easy task in which subjects developed discriminative CRs, they were trained in a difficult task (reduced frequency distance between CS+ and CS-) in which they failed to discriminate. However, frequency-specific RF plasticity developed at both levels of task difficulty. Responses to the frequency of the CS+ were increased, whereas responses to other frequencies, including the CS- and the prepotent best frequency (BF) were reduced. In many cases, tuning was shifted such that the frequency of the CS+ became the new BF. The effects were present or stronger after a 1-hr retention interval. The role of RF plasticity in the ACx is discussed for behavioral performance and information storage.
Intracerebral muscimol injection is widely used to inactivate discrete brain structures during behavioral tasks. However, little effort has been made to quantify the extent of muscimol diffusion. The authors report here electrophysiological and autoradiographic results obtained after muscimol injection (1 microg/microl) either into the nucleus basalis magnocellularis (0.1-0.4 microl) or into the thalamic reticular nucleus (RE, 0.05-0.1 microl). In 52 rats, multiunit recordings were collected either in the RE or in the auditory thalamus during the 2 h following muscimol injection. Decreases in neuronal activity were observed up to 3 mm from the injection site; their time of occurrence was a function of the distance between the injection and recording sites. Because these decreases cannot be explained by physiological effects, they likely reflected muscimol diffusion up to the recording sites. Autoradiographic studies involved 25 rats and different experimental conditions. Optical density (OD) measures indicated that after a survival time of 15 min, a 0.05 microl injection produced a labeled area of 5.25 mm(2) at the injection site and a rostrocaudal labeling of 1.7 mm. Increasing the survival time to 60 min, or increasing the injected volume to 0.1 microl, systematically led to a larger labeled area at the injection site (8-12 mm(2)) and to a larger rostrocaudal diffusion (2.0-2.5 mm). Direct quantifications of radioactivity by a high-resolution radioimager validated the OD measures and even indicated a larger muscimol diffusion (up to 3.25 mm). Thus, these data point out that muscimol diffusion after intracerebral microinjection is larger than usually supposed. The relationships between these results and those obtained in behavioral studies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.