We demonstrate the single photon counting mode at 405 and 850 nm with stoichiometric TiN-based microwave kinetic inductance detectors realized on a sapphire substrate and operated at bath temperatures over 300 mK. The detectors use single 15–25 nm-thick TiN layers featuring a critical temperature in the 2–3 K range. We found that the energy-resolving power R=E/ΔE exhibits an optimum with bath temperature, occurring in the 300–450 mK range, which can be almost double compared to those obtained at the lowest temperatures. Furthermore, the single photon regime is observed up to 700 mK. In addition to a high-temperature operation, the single stoichiometric layer would allow achieving a better uniformity in the critical temperature and, thus, kinetic inductance, compared to the often desired ∼1 K sub-stoichiometric TiN.
A nonlinear analytical model for the pressure dynamics in a vacuum chamber, pumped with a sputter ion pump (SIP), is proposed, discussed and experimentally evaluated. The model describes the physics of the pumping mechanism of SIPs in the context of a cold atom experiment. By using this model, we fit pump-down curves of our vacuum system to extract the relevant physical parameters characterizing its pressure dynamics. The aim of this investigation is the optimization of cold atom experiments in terms of reducing the dead time for quantum sensing using atom interferometry. We develop a calibration method to improve the precision in pressure measurements via the ion current in SIPs. Our method is based on a careful analysis of the gas conductance and pumping in order to reliably link the pressure readings at the SIP with the actual pressure in the vacuum (science) chamber. Our results are in agreement with the existence of essentially two pumping regimes determined by the pressure level in the system. In particular we found our results in agreement with the well known fact that for a given applied voltage, at low pressures, the discharge current efficiently sputters pumping material from the pump's electrodes. This process sets the leading pumping mechanism in this limit. At high pressures, the discharge current drops and the pumping is mainly performed by the already sputtered material.
Following optical pulses (λ=405 nm) on titanium nitride microwave kinetic inductance detectors cooled down at temperatures T≤Tc/20 (Tc≃4.6 K), we observe a large phase-response highlighting two different modes simultaneously that are nevertheless related. The first corresponds to the well-known transition of cooper-pair breaking into quasi-particles, which produces a known phase response. This is immediately followed by a large inverse response lasting several hundreds of microseconds to several milliseconds depending on the temperature. We propose to model this inverse pulse as the thermal perturbation of the superconductor and interaction with a two-level system (TLS) that reduces the dielectric constant, which in turn modifies the capacitance and, therefore, the resonance frequency. The ratio of the TLS responding to the illumination is on the order of that of the area of the inductor to the whole resonator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.