Nous traitons ici de la conception de systèmes anti-vibratoires venant modifier des structures complexes. L'approche développée utilise en entrée des modèles enéléments-finis condensés, ou bien des systèmes représentés sous une forme simplifiéeà partir de modèles fonctionnels, ou bien encore de données expérimentales. Cette approche peut s'utiliser pourévaluer rapidement le potentiel de concepts et procéder a un premier dimensionnement, mais aussi pour dimensionner finement ces mêmes concepts au cours des cycles de conception. Nous utilisons comme point de départ les formules classiques de raccord impédanciel, que nous exploitons avec les propriétés homographiques identifiées par A.H. Vincent [1]. La méthode proposée permet notamment de prendre en compte des amortissements, de contrôler les effets de la modification sur l'ensemble de la bande de fréquences d'étude, ainsi que d'évaluer la sensibilité aux paramètres de conception. Nous donnons ici une application de cette méthode au dimensionnement d'un joint antivibratoire pour une culasse de moteur Diesel.
The main issue in the present paper is to comment and illustrate on new acoustic examples the method of analysis of modal series, termed "method of orthocomplement", that has been recently proposed by the authors to improve the convergence of such series. The general method consists in a direct analysis and transformation of the remainders of ordinary series. It results in a family of "hybrid" modal representations involving an ordinary modal sum of order N , a "quasi-static" term based on the N first modes, and an "accelerated" modal series. Using the transformed modal formulae eliminates the Gibbs oscillations -that are attached in infinite dimensional models to modal boundary discontinuities -and also the consequences of such phenomena on finite element approximations. The method is applied in the present paper to plane waves in acoustic tubes and to 3D acoustic fields inside a car compartment, in view of the synthesis of acoustic receptances or impedances to be used in practical acoustic design. The main technical difficulty being the treatment of singular linear boundary problems or systems of linear equations that arise during the study of closed rigid cavities or tubes, a whole section of the paper had thus to be devoted to pseudo-inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.