A method for optimizing acoustical linings is described and applied to multilayered panels including solid, fluid, and porous components. This optimization is based on an analytical simulation of the insulation properties and a genetic algorithm. The objective function is defined by taking into account both the acoustical frequency response over a 1/3 octave spectrum and the total mass of the panel. The optimization process gives rise to an optimal choice for the number of layers as well as for the nature and the thickness of each layer that maximizes the transmission loss. A practical example of such an optimization is described.
This paper deals with a new method for solving coupled acoustical problems such as those arising from the study of insulation panels with porous linings. The main idea is to use the boundary element method (BEM) for modeling porous media in order to simplify problem solving in mid-frequency range. This approach reduces the entire problem to only unknowns on the boundaries. Developments have been oriented in a bi-dimensional formulation with a constant element discretization scheme. A multi-region assembly of porous subdomains and a coupling procedure with structural finite elements complete this approach. Comparisons between the finite element method (FEM) and the present solution (mixed FEM and BEM) show a close agreement. Moreover, the analysis of a multi-layer system through this mixed numerical method results in faster processing time and less memory usage than a conventional full finite element method.
Nous traitons ici de la conception de systèmes anti-vibratoires venant modifier des structures complexes. L'approche développée utilise en entrée des modèles enéléments-finis condensés, ou bien des systèmes représentés sous une forme simplifiéeà partir de modèles fonctionnels, ou bien encore de données expérimentales. Cette approche peut s'utiliser pourévaluer rapidement le potentiel de concepts et procéder a un premier dimensionnement, mais aussi pour dimensionner finement ces mêmes concepts au cours des cycles de conception. Nous utilisons comme point de départ les formules classiques de raccord impédanciel, que nous exploitons avec les propriétés homographiques identifiées par A.H. Vincent [1]. La méthode proposée permet notamment de prendre en compte des amortissements, de contrôler les effets de la modification sur l'ensemble de la bande de fréquences d'étude, ainsi que d'évaluer la sensibilité aux paramètres de conception. Nous donnons ici une application de cette méthode au dimensionnement d'un joint antivibratoire pour une culasse de moteur Diesel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.