Methionine sulfoxide reductases A and B are antioxidant repair enzymes that reduce the S-and R-diastereomers of methionine sulfoxides back to methionine, respectively. Enterococcus faecalis, an important nosocomial pathogen, has one msrA gene and one msrB gene situated in different parts of the chromosome. Promoters have been mapped and mutants have been constructed in two E. faecalis strains (strains JH2-2 and V583) and characterized. For both backgrounds, the mutants are more sensitive than the wild-type parents to exposure to H 2 O 2 , and in combination the mutations seem to be additive. The virulence of the mutants has been analyzed in four different models. Survival of the mutants inside mouse peritoneal macrophages stimulated with recombinant gamma interferon plus lipopolysaccharide but not in naïve phagocytes is significantly affected. The msrA mutant is attenuated in the Galleria mellonella insect model. Deficiency in either Msr enzyme reduced the level of virulence in a systemic and urinary tract infection model. Virulence was reconstituted in the complemented strains. The combined results show that Msr repair enzymes are important for the oxidative stress response, macrophage survival, and persistent infection with E. faecalis.
Enterococcus faecalis is a resident bacterium of the intestinal tract of humans and animals. This bacterium can be responsible for serious diseases and is one of the largest causes of hospital-based infections. This hardy organism resists many kinds of stresses and is used as a major indicator of the hygienic quality of food, milk, and drinking water. On the other side, enterococci seem to have beneficial role in the development of cheese aroma and are added in certain starter cultures. Since ten years, our laboratory has used the two-dimensional electrophoresis (2-DE) technique to study the response of E. faecalis to physical or chemical stresses as well as to glucose and total starvation. Twenty-seven protein spots on 2-D gels have been identified by N-terminal sequencing or Western blotting which make up the first proteome database of this species. The proteins were classified in four different groups according to their function and their regulation. The first group comprises well-characterized proteins with known protective functions towards stresses. The second group contains enzymes of catabolic pathways. Their implication in stress resistance seems not obvious. A third group are proteins induced in glucose-starved cells belonging to the CcpA regulon. Induction of these enzymes under starvation may serve to increase the scavenging capacity of the cells for nutrients or may be important to mobilize endogenous energetic reserves. Lastly, nine N-terminal amino acid sequences or open reading frames (ORF) showed no homologies with sequences in databases. A comprehensive description of stress proteins of E. faecalis and analysis of their patterns of expression under different environmental conditions would greatly increase our understanding of the molecular mechanisms underlying the extraordinary capacity of this bacterium to survive under hostile conditions.
The ability of Enterococcus faecalis to metabolically adapt to an oligotrophic environment has been analyzed. E. faecalis is able to survive for prolonged periods under conditions of complete starvation established by incubation in tap water. During incubation in this microcosm, cells developed a rippled cell surface with irregular shapes. Exponentially growing cells survived to the same extent as cells starved for glucose prior to exposure to the multiple nutrient deficient stress. Chloramphenicol treatment during incubation in tap water led to a rapid decline in plate counts for exponentially growing cells but showed progressively reduced influence on stationary-phase cells harvested after different times of glucose starvation. During incubation in the oligotrophic environment, cells from the exponential-growth phase and early-stationary phase became progressively more resistant to other environmental stresses (heat [62°C], acid [pH 3.3], UV254 nm light [180 J/m2], and sodium hypochlorite [0.05%]) until they reached a maximum of survival characteristic for each treatment. In contrast, cells starved of glucose for 24 h did not become more resistant to the different treatments during incubation in tap water. Our combined data suggest that energy starvation induces a response similar to that triggered by oligotrophy. Analysis of protein synthesis by two-dimensional gel electrophoresis revealed the enhanced synthesis of 51 proteins which were induced in the oligotrophic environment. A comparison of these oligotrophy-inducible proteins with the 42 glucose starvation-induced polypeptides (J. C. Giard, A. Hartke, S. Flahaut, P. Boutibonnes, and Y. Auffray, Res. Microbiol. 148:27–35, 1997) showed that 16 are common between the two different starvation conditions. These proteins and the corresponding genes seem to play a key role in the observed phenomena of long-term survival and development of general stress resistance of starved cultures of E. faecalis.
The gene encoding the manganese-containing superoxide dismutase (MnSOD) of Enterococcus faecalis was characterized. It is transcribed monocistronically from an upstream promoter identified by rapid amplification of cDNA ends (RACE)-PCR. A sodA mutant was constructed and characterized. Growth of the mutant strain was not significantly different from that of its wild-type counterpart in standing and aerated cultures. However, the mutant was more sensitive towards menadione and hydroperoxide stresses. The response to H2O2 stress was analysed in more detail, and the mode of killing of this oxidant was different under anaerobic and aerobic conditions. Cultures grown and challenged under anaerobic conditions were highly sensitive to treatment with 35 mM H2O2. They were largely protected by the iron chelator deferoxamine, which suggested that killing was mainly due to an enhanced Fenton reaction. In contrast, neither strain was protected by the iron chelators deferoxamine and diethylenetriaminepentaacteic acid when grown and challenged under aerobic conditions, which suggested that inactivation of the cells by H2O2 was due to another killing mode. The sodA mutant was more sensitive under these conditions, showing that MnSOD is also important for protecting the cells from damage under aerobic conditions. Finally, the MnSOD of Ent. faecalis may be considered to be a virulence factor, since survival of the corresponding mutant strain was highly affected inside mouse peritoneal macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.