ABSTRACT:The assessment of regional climate change requires the development of reference long-term retrospective meteorological datasets. This article presents an 8-km-resolution atmospheric reanalysis over France performed with the the Safran-gauge-based analysis system for the period 1958-2008. Climatological features of the Safran 50-year analysis -long-term mean values, inter-annual and seasonal variability -are first presented for all computed variables: rainfall, snowfall, mean air temperature, specific humidity, wind speed and solar and infrared radiation. The spatial patterns of precipitation, minimum and maximum temperature are compared with another spatialization method, and the temporal consistency of the reanalysis is assessed through various validation experiments with both dependent and independent data. These experiments demonstrate the overall robustness of the Safran reanalysis and the improvement of its quality with time, in connection with the sharp increase in the observation network density that occurred in the 1990s. They also show the differentiated sensitivity of variables to the number of available ground observations, with precipitation and air temperature being the more robust ones. The comparison of trends from the reanalysis with those from homogenized series finally shows that if spatial patterns are globally consistent with both approaches, care must be taken when using literal values from the reanalysis and corresponding statistical significance in climate change detection studies. The Safran 50-year atmospheric reanalysis constitutes a long-term forcing datasets for land surface schemes and thus enables the simulation of the past 50 years of water resources over France.
Abstract.Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc.) on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM) hydrometeorological suite. The high-resolution 1958-2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI) at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts -through the Standardized Soil Wetness Index (SSWI) -and multiscale hydrological droughts, through the Standardized Flow Index (SFI). Based on a common threshold level for all indices, drought event statistics over the 50-yr period -number of events, duration, severity and magnitude -have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow). Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics Correspondence to: J.-P. Vidal (jean-philippe.vidal@cemagref.fr) have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989)(1990)) to short hot and dry periods (2003). Results show that the ranking of drought events depends highly on both the time scale and the variable considered. This multilevel and multiscale drought climatology will serve as a basis for assessing the impacts of climate change on droughts in France.
[1] An abundance of methods have been developed over the years to perform the frequency analysis (FA) of extreme environmental variables. Although numerous comparisons between these methods have been implemented, no general comparison framework has been agreed upon so far. The objective of this paper is to build the foundation of a data-based comparison framework, which aims at complementing more standard comparison schemes based on Monte Carlo simulations or statistical testing. This framework is based on the following general principles: (i) emphasis is put on the predictive ability of competing FA implementations, rather than their sole descriptive ability measured by some goodness-of-fit criterion; (ii) predictive ability is quantified by means of reliability indices, describing the consistency between validation data (not used for calibration) and FA predictions; (iii) stability is also quantified, i.e., the ability of a FA implementation to yield similar estimates when calibration data change; and (iv) the necessity to subject uncertainty estimates to the same scrutiny as point estimates is recognized, and a practical approach based on the use of the predictive distribution is proposed for this purpose. This framework is then applied to a case study involving 364 gauging stations in France, where 10 FA implementations are compared. These implementations correspond to the local, regional, and local-regional estimation of Gumbel and generalized extreme value distributions. Results show that reliability and stability indices are able to reveal marked differences between FA implementations. Moreover, the case study also confirms that using the predictive distribution to indirectly scrutinize uncertainty estimates is a viable approach, with distinct FA implementations showing marked differences in the reliability of their uncertainty estimates. The proposed comparison framework therefore constitutes a valuable tool to compare the predictive reliability of competing FA implementations, along with the reliability of their uncertainty estimates.
Abstract. Low-flow simulation and forecasting remains a difficult issue for hydrological modellers, and intercomparisons can be extremely instructive for assessing existing lowflow prediction models and for developing more efficient operational tools. This research presents the results of a collaborative experiment conducted to compare low-flow simulation and forecasting models on 21 unregulated catchments in France. Five hydrological models (four lumped storagetype models -Gardenia, GR6J, Mordor and Presages -and one distributed physically oriented model -SIM) were applied within a common evaluation framework and assessed using a common set of criteria. Two simple benchmarks describing the average streamflow variability were used to set minimum levels of acceptability for model performance in simulation and forecasting modes. Results showed that, in simulation as well as in forecasting modes, all hydrological models performed almost systematically better than the benchmarks. Although no single model outperformed all the others for all catchments and criteria, a few models appeared to be more satisfactory than the others on average. In simulation mode, all attempts to relate model efficiency to catchment or streamflow characteristics remained inconclusive. In forecasting mode, we defined maximum useful forecasting lead times beyond which the model does not bring useful information compared to the benchmark. This maximum useful lead time logically varies between catchments, but also depends on the model used. Simple multi-model approaches that combine the outputs of the five hydrological models were tested to improve simulation and forecasting efficiency. We found that the multi-model approach was more robust and could provide better performance than individual models on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.