Melanomas display poor response rates to adjuvant therapies because of their intrinsic resistance to proapoptotic stimuli. This study indicates that such resistance can be overcome, at least partly, through the targeting of eEF1A elongation factor with narciclasine, an Amaryllidaceae isocarbostyril controlling plant growth. Narciclasine displays IC(50) growth inhibitory values between 30-100 nM in melanoma cell lines, irrespective of their levels of resistance to proapoptotic stimuli. Normal noncancerous cell lines are much less affected. At nontoxic doses, narciclasine also significantly improves (P=0.004) the survival of mice bearing metastatic apoptosis-resistant melanoma xenografts in their brain. The eEF1A targeting with narciclasine (50 nM) leads to 1) marked actin cytoskeleton disorganization, resulting in cytokinesis impairment, and 2) protein synthesis impairment (elongation and initiation steps), whereas apoptosis is induced at higher doses only (≥200 nM). In addition to molecular docking validation and identification of potential binding sites, we biochemically confirmed that narciclasine directly binds to human recombinant and yeast-purified eEF1A in a nanomolar range, but not to actin or elongation factor 2, and that 5 nM narciclasine is sufficient to impair eEF1A-related actin bundling activity. eEF1A is thus a potential target to combat melanomas regardless of their apoptosis-sensitivity, and this finding reconciles the pleiotropic cytostatic of narciclasine. -
Background: P-glycoprotein belongs to the family of ATP-binding cassette proteins which hydrolyze ATP to catalyse the translocation of their substrates through membranes. This protein extrudes a large range of components out of cells, especially therapeutic agents causing a phenomenon known as multidrug resistance. Because of its clinical interest, its activity and transport function have been largely characterized by various biochemical studies. In the absence of a high-resolution structure of P-glycoprotein, homology modeling is a useful tool to help interpretation of experimental data and potentially guide experimental studies.
Multidrug transporters of the ATP-binding cassette family export a wide variety of compounds across membranes in both prokaryotes and eukaryotes, using ATP hydrolysis as energy source. Several of these membrane proteins are of clinical importance. Although biochemical and structural studies have provided insights into the mechanism underlying substrate transport, many key questions subsist regarding the molecular and structural nature of this mechanism. In particular, the detailed conformational changes occurring during the catalytic cycle are still elusive. We explored the conformational changes occurring upon ATP/Mg 2+ binding using molecular dynamics simulations starting from the nucleotide-bound structure of SAV1866 embedded in an explicit lipid bilayer. The removal of nucleotide revealed a major rearrangement in the outer membrane leaflet portion of the transmembrane domain (TMD) resulting in the closure of the central cavity at the extracellular side. This closure is similar to that observed in the crystal nucleotide-free structures. The interface of the nucleotide-binding domain dimer (NDB) is significantly more hydrated in the nucleotide-free trajectory though it is not disrupted. This finding suggests that the TMD closure could occur as a first step preceding the dissociation of the dimer. The transmission pathway of the signal triggered by the removal of ATP/Mg 2+ mainly involves the conserved Q-loop and X-loop as well as TM6.
18-β-Glycyrrhetinic acid (GA; 1) and many of its derivatives are cytotoxic in cancer cells. The current study aims to characterize the anticancer effects of 17 novel 1 derivatives. On the basis of these studies, N-(2-{3-[3,5-bis(trifluoromethyl)phenyl]ureido}ethyl)-glycyrrhetinamide (6b) appeared to be the most potent compound, with IC(50)in vitro growth inhibitory concentrations in single-digit micromolarity in a panel of 8 cancer cell lines. Compound 6b is cytostatic and displays similar efficiency in apoptosis-sensitive versus apoptosis-resistant cancer cell lines through, at least partly, the inhibition of the activity of a cluster of a dozen kinases that are implicated in cancer cell proliferation and in the control of the actin cytoskeleton organization. Compound 6b also inhibits the activity of the 3 proteolytic units of the proteasome. Compound 6b thus represents an interesting hit from which future compounds could be derived to improve chemotherapeutic regimens that aim to combat cancers associated with poor prognoses.
A new approach is presented to estimate molar volumes and densities of liquids in ambient conditions from van der Waals models, taking advantage of the correlation between the intermolecular volume and the atomic contributions to the molecular surface area. Using this approach, the role of hydrogen bonds can be quantified. The densities obtained prove remarkably close to the values derived from the ACD group contribution method. However, the present approach requires much less empirical parameters and may be applied to arbitrary H-C-N-O-F-S-Cl-Br compounds. Moreover, it is more reliable than earlier empirical procedures, including quantitative structure property relationships (QSPR). While it does not correct the deficiencies of group contribution methods, it provides a natural approach to introduce temperature effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.