While the use of silicon‐based electrodes can increase the capacity of Li‐ion batteries considerably, their application is associated with significant capacity losses. In this work, the influences of solid electrolyte interphase (SEI) formation, volume expansion, and lithium trapping are evaluated for two different electrochemical cycling schemes using lithium‐metal half‐cells containing silicon nanoparticle–based composite electrodes. Lithium trapping, caused by incomplete delithiation, is demonstrated to be the main reason for the capacity loss while SEI formation and dissolution affect the accumulated capacity loss due to a decreased coulombic efficiency. The capacity losses can be explained by the increasing lithium concentration in the electrode causing a decreasing lithiation potential and the lithiation cut‐off limit being reached faster. A lithium‐to‐silicon atomic ratio of 3.28 is found for a silicon electrode after 650 cycles using 1200 mAhg−1 capacity limited cycling. The results further show that the lithiation step is the capacity‐limiting step and that the capacity losses can be minimized by increasing the efficiency of the delithiation step via the inclusion of constant voltage delithiation steps. Lithium trapping due to incomplete delithiation consequently constitutes a very important capacity loss phenomenon for silicon composite electrodes.
The processes that cause the failure of sheathless electrospray ionization (ESI) emitters, based on different kinds of gold coatings on fused-silica capillaries, are described and explained. The methods chosen for this study include electrochemical methods, ICPMS analysis of the electrolytes used, SEM studies, and electrospray experiments. Generally, the failure occurs by loss of the conductive coating. It is shown that emitters with sputter-coated gold lose their coatings because of mechanical stress caused by the gas evolution accompanying water oxidation or reduction. Emitters with gold coatings on top of adhesion layers of chromium and nickel alloy withstand this mechanical stress and have excellent durability when operating as cathodes. When operating as anodes, the adhesion layer is electrochemically dissolved through the gold film, and the gold film then flakes off. It is shown that the conductive coating behaves as a cathode even in the positive electrospray mode when the magnitude of a superimposed reductive electrophoretic current exceeds that of the oxidative electrospray current. Fairy-dust coatings developed in our laboratory (see Barnidge, D. R.; etal.Anal. Chem. 1999, 71, 4115-4118,) bygluing gold dust onto the emitter, are unaffected by the mechanical stress due to gas evolution. When oxidized, the fairy-dust coatings show an increased surface roughness and decreased conductivities due to the formation of gold oxide. The resistance of this oxide layer is however negligible in comparison with that of the gas phase in ESI. Furthermore, since no flaking and only negligible electrochemical etching of gold was found, practically unlimited emitter lifetimes may be achieved with fairy-dust coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.