For the massless Dirac equation outside a slow Kerr black hole, we prove asymptotic completeness. We introduce a new Newman–Penrose tetrad in which the expression of the equation contains no artificial long-range perturbations. The main technique used is then a Mourre estimate. The geometry near the horizon requires us to apply a unitary transformation before we find ourselves in a situation where the generator of dilations is a good conjugate operator. The results are eventually re-interpreted geometrically to provide the solution to a Goursat problem on the Penrose compactified exterior.
We work on a class of non-stationary vacuum space-times admitting a conformal compactification that is smooth at null and timelike infinity. Via a conformal transformation, the existence of a scattering operator for field equations is interpreted as the well-posedness of a Goursat problem on null infinity. We solve the Goursat problem in the case of Dirac and Maxwell fields. The case of the wave equation is also discussed and it is shown why the method cannot be applied at present. Then the conformal scattering operator is proved to be equivalent to an analytical scattering operator defined in terms of classical wave operators.
We show that existing decay results for scalar fields on the Schwarzschild metric are sufficient to obtain a conformal scattering theory. Then we re-interpret this as an analytic scattering theory defined in terms of wave operators, with an explicit comparison dynamics associated with the principal null geodesic congruences. The case of the Kerr metric is also discussed.
We extend Penrose's peeling model for the asymptotic behaviour of solutions to the scalar wave equation at null infinity on asymptotically flat backgrounds, which is well understood for flat space-time, to Schwarzschild and the asymptotically simple space-times of Corvino-Schoen/Chrusciel-Delay. We combine conformal techniques and vector field methods: a naive adaptation of the 'Morawetz vector field' to a conformal rescaling of the Schwarzschild metric yields a complete scattering theory on Corvino-Schoen/Chrusciel-Delay space-times. A good classification of solutions that peel arises from the use of a null vector field that is transverse to null infinity to raise the regularity in the estimates. We obtain a new characterization of solutions admitting a peeling at a given order that is valid for both Schwarzschild and Minkowski space-times. On flat space-time, this allows larger classes of solutions than the characterizations used since Penrose's work. Our results establish the validity of the peeling model at all orders for the scalar wave equation on the Schwarzschild metric and on the corresponding Corvino-Schoen/Chrusciel-Delay space-times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.