A cross-sectional study was conducted from May 2016 to January 2017 in Rubavu and Nyabihu districts, Western Rwanda, aiming at estimating the prevalence of subclinical mastitis (SCM) and identifying its causative bacteria. Management practices and milking procedures were recorded through a questionnaire. 123 crossbreed milking cows from 13 dairy farms were randomly selected and screened for SCM using California Mastitis Test (CMT). Composite CMT positive milk samples were processed for bacterial isolation and identification. The overall SCM prevalence at cow level was 50.4%. 68 bacterial isolates were identified by morphological and biochemical characteristics. They included, Coagulase Negative Staphylococci (51.5%), Staphylococcus aureus (20.6%), Streptococcus species (10.3%), Bacillus species (10.3%), Streptococcus agalactiae (5.8%), and Escherichia coli (1.5%). About 67.1% of the farmers checked for mastitis; of these, 58.9% relied on clinical signs and only 6.8% screened with CMT. Only 5.5% and 2.7% of the farmers tried to control mastitis using dry cow therapy and teat dips, respectively. Thus, to reduce the prevalence of SCM, farmers in the study area need to be trained on good milking practices, including regular use of teat dips, application of dry cow therapy, and SCM screening. This will improve their sales and their financial status.
Four subclinical mastitis diagnostic tests (the UdderCheck® test [a lactate dehydrogenase-based test], the California Mastitis Test [CMT], the Draminski® test [a conductivity-based test] and the PortaSCC® test [a portable somatic cell count-based test]) were compared in a study comprising crossbreed dairy cows (n = 30) during September and October 2015. Sensitivity and specificity of the CMT, Draminski® and UdderCheck® tests were compared with the PortaSCC® as reference. The CMT, Draminski® and UdderCheck® test results were compared with the results of the PortaSCC® test using kappa statistics. Duplicate quarter milk samples (n = 120) were concurrently subjected to the four tests. Sensitivity and specificity were 88.46% and 86.17% (CMT), 78.5% and 81.4% (Draminski®) and 64.00% and 78.95% (UdderCheck®). The CMT showed substantial agreement (k = 0.66), the Draminski® test showed moderate agreement (k = 0.48) and the UdderCheck® test showed fair agreement (k = 0.37) with the PortaSCC® test and positive likelihood ratios were 6.40, 4.15 and 3.04, respectively. The cow-level subclinical mastitis prevalence was 70%, 60%, 60% and 56.7% for PortaSCC®, CMT, Draminski® and UdderCheck® tests, respectively. At udder quarter level, subclinical mastitis prevalence was 20%, 21.67% and 20.83% for PortaSCC®, CMT and UdderCheck®, respectively. A correlation (P < 0.05) and moderate strength of association were found between the four tests used. The study showed that compared to the PortaSCC® test, the CMT was the most preferable option, followed by the Draminski® test, while the UdderCheck® test was the least preferable option for subclinical mastitis screening.
This study was conducted to assess raw milk bacterial loads and microorganisms associated with milk handling practices and raw milk chain in the Northwestern region of Rwanda. A multistage sampling method was used to collect sixty-seven raw milk samples that were analyzed for milk quality at four stages of the raw milk chain: dairy farmers, milk hawkers, milk collection centres (MCC) and milk kiosks. Total bacterial counts (TBC) at different stages of the chain were determined and microorganisms were isolated. A questionnaire was distributed to gather information on factors and milk handling practices that influence milk quality at farm level. The study revealed a TBC mean values of 1.2 × 10 6 CFU/ml (dairy farmers), 2.6 × 10 7 CFU/ml (milk hawkers), 1.5 × 10 6 CFU/ml (MCC) and 6.9 × 10 6 CFU/ml (kiosks/restaurants). The prevalent microorganisms were: Escherichia coli (E. coli), 26.9%; Salmonella spp., 16.4%; Streptococcus spp., 16.4%; coagulase-negative staphylococci (CNS), 14.9%. Bacterial load was highly associated with containers used for milk transport, cleaning time of milk containers and source of water used to clean containers. It is, therefore, highly recommended that all concerned parties in the raw milk value chain improve their milk handling and storage practices.
Background Wildebeest associated malignant catarrhal fever (WA-MCF) is a fatal disease of cattle. Outbreaks are seasonal and associated with close interaction between cattle and calving wildebeest. In Kenya, WA-MCF has a dramatic effect on cattle-keepers who lose up to 10% of their cattle herds per year. The objective of this study was to report the impact of WA-MCF on a commercial ranch and assess the performance of clinical diagnosis compared to laboratory diagnosis as a disease management tool. A retrospective study of WA-MCF in cattle was conducted from 2014 to 2016 at Kapiti Plains Ranch Ltd., Kenya. During this period, 325 animals showed clinical signs of WA-MCF and of these, 123 were opportunistically sampled. In addition, 51 clinically healthy animals were sampled. Nested polymerase chain reaction (PCR) and indirect enzyme linked immunosorbent assay (ELISA) were used to confirm clinically diagnosed cases of WA-MCF. A latent class model (LCM) was used to evaluate the diagnostic parameters of clinical diagnosis and the tests in the absence of a gold standard. Results By PCR, 94% (95% C.I. 89–97%) of clinically affected animals were positive to WA-MCF while 63% (95% C.I. 54–71%) were positive by indirect ELISA. The LCM demonstrated the indirect ELISA had poor sensitivity 63.3% (95% PCI 54.4–71.7%) and specificity 62.6% (95% PCI 39.2–84.9%) while the nested PCR performed better with sensitivity 96.1% (95% PCI 90.7–99.7%) and specificity 92.9% (95% PCI 76.1–99.8%). The sensitivity and specificity of clinical diagnosis were 99.1% (95% PCI 96.8–100.0%) and 71.5% (95% PCI 48.0–97.2%) respectively. Conclusions Clinical diagnosis was demonstrated to be an effective method to identify affected animals although animals may be incorrectly classified resulting in financial loss. The study revealed indirect ELISA as a poor test and nested PCR to be a more appropriate confirmatory test for diagnosing acute WA-MCF. However, the logistics of PCR make it unsuitable for field diagnosis of WA-MCF. The future of WA-MCF diagnosis should be aimed at development of penside techniques, which will allow for fast detection in the field. Electronic supplementary material The online version of this article (10.1186/s12917-019-1818-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.