Striatin, an intraneuronal, calmodulin‐binding protein addressed to dendrites and spines, is expressed in the motor system, particularly the striatum and motoneurons. Striatin contains a high number of domains mediating protein–protein interactions, suggesting a role within a dendritic Ca2+‐signaling pathway. Here, we explored the hypothesis of a direct role of striatin in the motor control of behaving rats, by using an antisense strategy based on oligodeoxynucleotides (ODN). Rats were treated by intracerebroventricular infusion of a striatin antisense ODN (A‐ODN) or mismatch ODN (M‐ODN) delivered by osmotic pumps over 6 days. A significant decrease in the nocturnal locomotor activity of A‐ODN–treated rats was observed after 5 days of treatment. Hypomotricity was correlated with a 60% decrease in striatin content of the striata of A‐ODN–treated rats sacrificed on day 6. Striatin thus plays a role in the control of motor function. To approach the cellular mechanisms in which striatin is involved, striatin down‐regulation was studied in a comparatively simpler model: purified rat spinal motoneurons which retain their polarity in culture. Treatment of cells by the striatin A‐ODN resulted in the impairement of the growth of dendrites but not axon. The decrease in dendritic growth paralleled the loss of striatin. This model allows analysis of the molecular basis of striatin function in the dynamic changes occurring in growing dendrites, and offers clues to unravel its function within spines. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 234–243, 1999
Rat spinal motoneurones sampled at day embryonic 15 were purified using a Nycodenz gradient and cultured in defined medium, during 7 days, on glass coverslips coated with poly-L-lysine and laminine. Purified acetylcholinesterase (AChE), ecothiopate, BW 284C51 and fasciculin II, inhibitors of either the catalytic or peripheral site of AChE, were added to the defined medium. Morphological changes of spinal motoneurones were measured using a statistical quantitative morphometric method, allowing the determination of various parameters such as the number of neurites and bifurcations, the length of neurites, the surface and spreading index. Presence of AChE in the medium (4 units/mL) increases the surface and the total length of neurites and axons without any change in the spreading index. When spinal motoneurones were cultured on AChE coated substrate, neurones rapidly migrate and form clusters. Addition of ecothiopate (10(-6) M) in the medium, which selectively blocks the catalytic site of AChE, leads to a slight increase in the number of primary neurite and a decrease of the spreading index during the three first days in culture. BW 284C51 (10(-5) M) which blocks the catalytic site but also affect the peripheral one, significantly reduces the number of primary neurites and increases the number of bifurcations. Fasciculin II, a potent blocker (10(-9)M) of the AChE peripheral site induces a decrease of both primary neurites and bifurcations with a significant increase of the length and growth velocity of the axon, giving a drastic enhancement of the spreading index. These phenomena are discussed in terms of catalytic and non-catalytic function of AChE, including the involvement of the enzyme in adhesive processes, occurring during growth and differentiation of spinal motoneurones.
An antigenic double mutant of rabies virus (challenge virus standard [CVS] strain) was selected by successive use of two neutralizing antiglycoprotein monoclonal antibodies, both specific for antigenic site III. This mutant differed from the original virus strain by two amino acid substitutions in the ectodomain of the glycoprotein. The lysine in position 330 and the arginine in position 333 were replaced by asparagine and methionine, respectively. This double mutant was not pathogenic for adult mice. When injected intramuscularly into the forelimbs of adult mice, this virus could not penetrate the nervous system, either by the motor or by the sensory route, while respective single mutants infected motoneurons in the spinal cord and sensory neurons in the dorsal root ganglia. In vitro experiments showed that the double mutant was able to infect BHK cells, neuroblastoma cells, and freshly prepared embryonic motoneurons, albeit with a lower efficiency than the CVS strain. Upon further incubation at 37°C, the motoneurons became resistant to infection by the mutant while remaining permissive to CVS infection. These results suggest that rabies virus uses different types of receptors: a molecule which is ubiquitously expressed at the surface of continuous cell lines and which is recognized by both CVS and the double mutant and a neuron-specific molecule which is not recognized by the double mutant.
1. Exogenously applied acetylcholine (ACh) is a modulator of human myoblast fusion. Using a chemiluminescent method, we examined whether an endogenous ACh‐like compound (ACh‐lc) was present in, and released by, pure human myogenic cells. 2. Single, freshly isolated satellite cells and proliferating myoblasts contained 15 and 0.5 fmol ACh‐lc, respectively. Cultured myotubes contained ACh‐lc as well. Also, ACh‐like immunoreactivity was detected in all myogenic cells. 3. Part of the ACh‐lc was synthesized by choline acetyltransferase (ChAT), as indicated by the reduction of ACh‐lc content when bromoACh was present in the culture medium, and by direct measurements of ChAT activity. Also, ChAT‐like immunoreactivity was observed in all myogenic cells. 4. Myoblasts and myotubes released ACh‐lc spontaneously by a partially Ca(2+)‐dependent mechanism. 5. The application by microperfusion of medium conditioned beforehand by myoblasts (thus presumably containing ACh‐lc) onto a voltage‐clamped myotube induced inward currents resembling ACh‐induced currents in their kinetics, reversal potential, and sensitivity to nicotinic antagonists. 6. In vitro, the spontaneously released ACh‐lc promoted myoblast fusion but only in the presence of an anticholinesterase. 7. Our observations indicate that human myogenic cells synthesize and release an ACh‐lc and thereby promote the fusion process that occurs in muscle during growth or regeneration.
Mushroom bodies, which are the main integrative centre for insect sensorial information, play a critical role in associative olfactory learning and memory. This paired brain structure contains interneurons grouped in a cortex, sending their axons into organized neuropiles. In the house cricket (Acheta domesticus) brain, persistent neuroblasts proliferate throughout adult life. Juvenile hormone (JH) has been shown to stimulate this proliferation [Cayre, M., Strambi, C. & Strambi, A. (1994) Nature, 368, 57-59]. In the present study, the effect of morphogenetic hormones on mushroom body cells maintained in primary culture was examined. Whereas JH did not significantly affect neurite growth, ecdysone significantly stimulated neurite elongation. Moreover, ecdysone also acted on neuroblast proliferation, as demonstrated by the reduced number of cells labelled with 5-bromodeoxyuridine following ecdysone application. Heterospecific antibodies raised against ecdysone receptor protein and ultraspiracle protein, the two heterodimers of ecdysteroid receptors, showed positive immunoreactivity in nervous tissue extracts and in nuclei of mushroom body cells, indicating the occurrence of putative ecdysteroid receptors in cricket mushroom body cells. These data indicate a dual role for ecdysone in adult cricket mushroom bodies: this hormone inhibits neuroblast proliferation and stimulates interneuron differentiation. These results suggest that a constant remodelling of mushroom body structure could result from physiological changes in hormone titres during adult life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.