PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-f]pyridine), the most abundant heterocyclic amine in diet, is involved in the etiology of cancer. PhIP and its carcinogenic metabolite Nhydroxy-PhIP (N-OH-PhIP) are extensively conjugated by UDP-glucuronosyltransferase (UGTs) with wide variability. This study aimed to determine the genetic influence of UGTs on the hepatic detoxification of this carcinogen. The formation of N-OH-PhIP glucuronides was studied in 48 human liver samples by mass spectrometry. Liver samples were genotyped for common polymorphisms and correlated with UGT protein levels and N-OH-PhIP glucuronidation activities. The formation of four different N-OH-PhIP glucuronide metabolites was observed in all livers. The major metabolite was N-OH-PhIP-N 2 -glucuronide (N 2 G), which is the primary metabolite found in human urine, and showed a high interindividual variability (up to 28-fold). Using an heterologous expression system, the bilirubin-conjugating UGT1A1 enzyme was identified among all known UGTs (n ؍ 16) as the predominant enzyme involved. The significant correlation between UGT1A1 protein content and formation of N 2 G (Rs ؍ 0.87; P < .0001) suggests a critical role for UGT1A1 in the hepatic metabolism of this carcinogen. UGT1A1 expression was strongly determined by the presence of the common promoter polymorphisms, UGT1A1*28 (TATA box polymorphism) (P ؍ .0031), ؊3156G/A (P ؍ .0006) and ؊3279G/T (P ؍ .0017), and rates of N 2 G were indeed correlated with these polymorphisms (P < .05), whether analyzed individually or in combination (haplotypes). In conclusion,
The oxidative metabolism of estrone (E 1 ) and estradiol (E 2 ) to form carcinogenic 4-hydroxy-catecholestrogens (4-OHCE) is associated with uterine and breast carcinogenesis. In this study, we conducted functional analyses of genetic variants in the UDP-glucuronosyltransferase UGT1A8, UGT1A9, and UGT2B7 enzymes primarily involved in the inactivation of 4-OHCEs. Compared with UGT2B7*2 (H 268 Y), UGT2B7*1 exhibited a 2-fold lower efficiency (intrinsic clearance) at conjugating 4-hydroxyestrone and 4-hydroxyestradiol at positions 3 and 4 caused by altered capacities (V max ) and affinities (K m ). The À79 G>A promoter variation, characterizing the UGT2B7*2g haplotype, leads to a 50% reduction of transcription (P < 0.001) in human endometrial carcinoma-1B cells. Furthermore, a >12-fold decreased intrinsic clearance of the *1 proteins was induced by selected amino acid substitutions in UGT1A8 (*3 C 277 Y) and UGT1A9 (*3 M 33 T). Frequencies of the low-activity alleles in Caucasians were 45% for UGT2B7*1, 5% for the À79A promoter variant, 1.2% for UGT1A8*3, and 2.2% for UGT1A9*3. Supporting a protective role in two organs sensitive to 4-OHCE-induced damages, the expression of UGT enzymes was shown by immunohistochemistry in normal breast and endometrial tissues and confirmed by Western blotting in a subset of samples. Altogether, findings suggest that specific polymorphisms in UGT genes may modulate the exposure to carcinogenic metabolites of E 2 and potentially lead to an altered risk of breast and endometrial cancers in women carrying the variant alleles. (Cancer Res 2006; 66(1): 125-33)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.