The oxidative metabolism of estrone (E 1 ) and estradiol (E 2 ) to form carcinogenic 4-hydroxy-catecholestrogens (4-OHCE) is associated with uterine and breast carcinogenesis. In this study, we conducted functional analyses of genetic variants in the UDP-glucuronosyltransferase UGT1A8, UGT1A9, and UGT2B7 enzymes primarily involved in the inactivation of 4-OHCEs. Compared with UGT2B7*2 (H 268 Y), UGT2B7*1 exhibited a 2-fold lower efficiency (intrinsic clearance) at conjugating 4-hydroxyestrone and 4-hydroxyestradiol at positions 3 and 4 caused by altered capacities (V max ) and affinities (K m ). The À79 G>A promoter variation, characterizing the UGT2B7*2g haplotype, leads to a 50% reduction of transcription (P < 0.001) in human endometrial carcinoma-1B cells. Furthermore, a >12-fold decreased intrinsic clearance of the *1 proteins was induced by selected amino acid substitutions in UGT1A8 (*3 C 277 Y) and UGT1A9 (*3 M 33 T). Frequencies of the low-activity alleles in Caucasians were 45% for UGT2B7*1, 5% for the À79A promoter variant, 1.2% for UGT1A8*3, and 2.2% for UGT1A9*3. Supporting a protective role in two organs sensitive to 4-OHCE-induced damages, the expression of UGT enzymes was shown by immunohistochemistry in normal breast and endometrial tissues and confirmed by Western blotting in a subset of samples. Altogether, findings suggest that specific polymorphisms in UGT genes may modulate the exposure to carcinogenic metabolites of E 2 and potentially lead to an altered risk of breast and endometrial cancers in women carrying the variant alleles. (Cancer Res 2006; 66(1): 125-33)
BackgroundUDP-glucuronosyltransferase 1A1 (UGT1A1) is a pivotal enzyme involved in metabolism of SN-38, the active metabolite of irinotecan commonly used to treat metastatic colorectal cancer. We previously demonstrated aberrant methylation of specific CpG dinucleotides in UGT1A1-negative cells, and revealed that methylation state of the UGT1A1 5'-flanking sequence is negatively correlated with gene transcription. Interestingly, one of these CpG dinucleotides (CpG -4) is found close to a HNF1 response element (HRE), known to be involved in activation of UGT1A1 gene expression, and within an upstream stimulating factor (USF) binding site.ResultsGel retardation assays revealed that methylation of CpG-4 directly affect the interaction of USF1/2 with its cognate sequence without altering the binding for HNF1-alpha. Luciferase assays sustained a role for USF1/2 and HNF1-alpha in UGT1A1 regulation in colon cancer cells. Based on the differential expression profiles of HNF1A gene in colon cell lines, we also assessed whether methylation affects its expression. In agreement with the presence of CpG islands in the HNF1A promoter, treatments of UGT1A1-negative HCT116 colon cancer cells with a DNA methyltransferase inhibitor restore HNF1A gene expression, as observed for UGT1A1.ConclusionsThis study reveals that basal UGT1A1 expression in colon cells is positively regulated by HNF1-alpha and USF, and negatively regulated by DNA methylation. Besides, DNA methylation of HNF1A could also play an important role in regulating additional cellular drug metabolism and transporter pathways. This process may contribute to determine local inactivation of drugs such as the anticancer agent SN-38 by glucuronidation and define tumoral response.
UGT1A3 is one of the most efficient at conjugating estrone, a precursor for biosynthesis of estradiol in peripheral tissues. We established the genetic mechanisms that might contribute to individual variation in UGT1A3 expression and activity. UGT1A3 first exon and 5'-flanking regions were sequenced in 249 Caucasians. We identified 17 polymorphisms, among them seven regulatory and 10 exonic polymorphisms with six leading to amino-acid changes. Luciferase reporter assays, site-directed mutagenesis and electrophoretic mobility shift assays using hepatoma HepG2 cells were carried out to show functionality of variant promoters. Reduced transcriptional activity was associated with all six variant promoters (two-fold; P<0.001). One of the potential mechanisms would involve the -148 T>C and -581 C>T variations that modulate gene function by affecting hepatocyte nuclear factor-1alpha and hepatocyte nuclear factor-4alpha binding, respectively. Then, estrone-conjugating activity was assessed with 11 heterologously expressed allozymes. Three phenotypes were observed; UGT1A3*1, *2 (WR, VA) and *3 (WR) with high intrinsic clearance values; UGT1A3*5 (QR, WR), *7 (FI), *9 (WR, ML), *10 (VA) and *11 (WR, VA and MI) had intermediate CLint (2X-10X lower vs. *1), whereas UGT1A3*4 (RW), *6 (WR, VA, MV) and *8 (AV) had low CLint (>10X lower vs. *1). Diplotype analyses indicate that 20.1% of individuals carry two alleles affecting UGT1A3 expression and/or activity. This study did not investigate genotype-phenotype association, but raise the possibility that genetically determined variation might contribute to variability in the inactivation of estrone by UGT1A3 and subsequent changes in lifetime exposure to estrogens potentially modifying risk of cancer.
ABSTRACT:Fenofibric acid (FA), the active moiety of fenofibrate, is an agonist of the peroxisome proliferator-activated nuclear receptor ␣ that modulates triglyceride and cholesterol profiles. Lipid response to fenofibrate and FA serum concentrations is highly variable. Although FA is reported to be almost exclusively inactivated by UDP-glucuronosyltransferases (UGTs) into FA-glucuronide (FA-G), the contribution of UGT isoenzymes has never been systematically assessed. Heterologously expressed human UGT1A and UGT2B and their coding variants were tested for FA glucuronidation using liquid chromatography/mass spectrometry. Recombinant UGT2B7 presented the highest V max /K m value (2.10 l/min/mg), 16-fold higher than the activity of other reactive UGTs, namely, UGT1A3, UGT1A6, and UGT1A9 (0.13, 0.09, and 0.02 l/min/mg, respectively). UGT2B7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.